(Press-News.org) All people have trillions of bacteria living in their intestines. If you place them on a scale, they weigh around 1.5 kg. Previously, a major part of these 'blind passengers' were unknown, as they are difficult or impossible to grow in laboratories. But over the past five years, an EU-funded research team, MetaHIT, coordinated by Professor S. Dusko Ehrlich at the INRA Research Centre of Jouy-en-Josas, France and with experts from Europe and China have used advanced DNA analysis and bioinformatics methods to map human intestinal bacteria.
-The genetic analysis of intestinal bacteria from 292 Danes shows that about a quarter of us have up to 40% less gut bacteria genes and correspondingly fewer bacteria than average. Not only has this quarter fewer intestinal bacteria, but they also have reduced bacterial diversity and they harbour more bacteria causing a low-grade inflammation of the body. This is a representative study sample, and the study results can therefore be generalised to people in the Western world, says Oluf Pedersen, Professor and Scientific Director at the Faculty of Health and Medical Sciences, University of Copenhagen.
Oluf Pedersen and Professor Torben Hansen have headed the Danish part of the MetaHIT project, and the findings are reported in the highly recognised scientific journal Nature.
The gut is like a rainforest
Oluf Pedersen compares the human gut and its bacteria with a tropical rainforest. He explains that we need as much diversity as possible, and – as is the case with the natural tropical rainforests – decreasing diversity is a cause for concern. It appears that the richer and more diverse the composition of our intestinal bacteria, the stronger our health. The bacteria produce vital vitamins, mature and strengthen our immune system and communicate with the many nerve cells and hormone-producing cells in the intestinal system. And, not least, the bacteria produce a wealth of bioactive substances which penetrate into the bloodstream and affect our biology in countless ways.
-Our study shows that people having few and less diverse intestinal bacteria are more obese than the rest. They have a preponderance of bacteria which exhibit the potential to cause mild inflammation in the digestive tract and in the entire body, which is reflected in blood samples that reveal a state of chronic inflammation, which we know from other studies to affect metabolism and increase the risk of type 2 diabetes and cardiovascular diseases, says Oluf Pedersen.
-And we also see that if you belong to the group with less intestinal bacteria and have already developed obesity, you will also gain more weight over a number of years. We don't know what came first, the chicken or the egg, but one thing is certain: it is a vicious circle that poses a health threat, says the researcher.
Take care of your intestinal bacteria
The researchers thus still cannot explain why some people have fewer intestinal bacteria, but the researchers are focusing their attention at dietary components, genetic variation in the human host, exposure to antimicrobial agents during early childhood and the chemistry we encounter daily in the form of preservatives and disinfectants.
A French research team reports a study in the same issue of Nature showing that by maintaining a low-fat diet for just six weeks, a group of overweight individuals with fewer and less diverse intestinal bacteria may, to some extent, increase the growth of intestinal bacteria, both in terms of actual numbers and diversity.
-This indicates that you can repair some of the damage to your gut bacteria simply by changing your dietary habits. Our intestinal bacteria are actually to be considered an organ just like our heart and brain, and the presence of health-promoting bacteria must therefore be cared for in the best way possible. Over the next years, we will be gathering more knowledge of how best to do this," says Oluf Pedersen, whose research team is studying, among other things, the impact of dietary gluten on gut bacteria composition and gut function.
Towards innovative early diagnostics
and treatment options
Obesity and type 2 diabetes are not just a result of unfortunate combinations of intestinal bacteria or lack of health-promoting intestinal bacteria, Oluf Pedersen emphasises. There are likely many causal factors at play. But the MetaHit researchers' contribution opens a new universe in which we begin to understand how gut bacteria in direct contact with the surrounding environment have a decisive impact on our health and risk of disease.
-At present we cannot do anything about our own DNA, individual variation in which also plays a crucial role in susceptibility for lifestyle diseases. But thanks to the new gut microbiota research, we now can start exploring interactions between host genetics and the gut bacteria- related environment which we may be able to change. That is why it is so exciting for us scientist within this research field– the possibilities are huge, says Oluf Pedersen.
-The long-term dream is to map and characterize any naturally occurring gut bacteria that produce appetite-inhibiting bioactive substances and in this way learn to exploit the body's own medicine to prevent the obesity epidemic and type 2 diabetes, says Oluf Pedersen.
###
Factbox 1: Danish researchers involved
Scientists from a number of Danish research institutions and hospitals have participated in the study: Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen; Lundbeck Foundation Center for Applied Medical Genomics in Personalised Disease Prediction, Prevention and Care (LuCamp); Center for Biological Sequence Analysis, Technical University of Denmark; Hagedorn Research Institute, Gentofte; Department of Systems Biology, Technical University of Denmark; Department of Biology, Faculty of Science, University of Copenhagen; University of Aarhus; University of Aalborg; University of Southern Denmark; Research Centre for Prevention and Health, Glostrup; Hospital of Vejle.
Factbox 2: The scientific article
In the article in Nature, the MetaHit scientists demonstrate that they by testing for just a few different bacteria species – with 98 % accuracy can distinguish between people with healthy intestinal bacteria and those who lack and have unhealthy bacteria. This provides promising opportunities for predicting diseases associated with an unhealthy bacterial composition in the intestines, for example type 2 diabetes and cardiovascular diseases. END
1 in 4 has alarmingly few intestinal bacteria
2013-08-29
ELSE PRESS RELEASES FROM THIS DATE:
We may all be Martians -- new research supports theory that life started on Mars
2013-08-29
New evidence has emerged which supports the long-debated theory that life on Earth may have started on Mars.
Professor Steven Benner will tell geochemists gathering today (Thursday 29 Aug) at the annual Goldschmidt conference that an oxidized mineral form of the element molybdenum, which may have been crucial to the origin of life, could only have been available on the surface of Mars and not on Earth. "In addition", said Professor Benner "recent studies show that these conditions, suitable for the origin of life, may still exist on Mars."
"It's only when molybdenum ...
Magnetic charge crystals imaged in artificial spin ice
2013-08-29
A team of scientists has reported direct visualization of magnetic charge crystallization in an artificial spin ice material, a first in the study of a relatively new class of frustrated artificial magnetic materials-by-design known as "Artificial Spin Ice." These charges are analogs to electrical charges with possible applications in magnetic memories and devices. The research team's findings appear in the August 29 issue of the journal Nature.
The unique properties of spin ice materials have fascinated scientists since they were first discovered in the late 1990s in ...
Blocking molecular pathway reverses pulmonary hypertension in rats, Stanford study finds
2013-08-29
STANFORD, Calif. - Pulmonary hypertension, a deadly form of high blood pressure that develops in the lungs, may be caused by an inflammation-producing molecular pathway that damages the inner lining of blood vessels, according to a new study by researchers at the Stanford University School of Medicine.
The results, which will be published Aug. 28 in Science Translational Medicine, suggest that using medications to block this pathway could lead to the first-known cure for the disease, apart from lung transplantation. The new research could also lead to a better understanding ...
East Antarctic Ice Sheet could be more vulnerable to climate change than previously thought
2013-08-29
The world's largest ice sheet could be more vulnerable to the effects of climate change than previously thought, according to new research from Durham University.
A team from the Department of Geography used declassified spy satellite imagery to create the first long-term record of changes in the terminus of outlet glaciers – where they meet the sea – along 5,400km of the East Antarctic Ice Sheet's coastline. The imagery covered almost half a century from 1963 to 2012.
Using measurements from 175 glaciers, the researchers were able to show that the glaciers underwent ...
The 'woman who understood Newton'
2013-08-29
In this month's edition of Physics World, Paula Findlen from Stanford University profiles Laura Bassi -- an emblematic and influential physicist from the 18th century who can be regarded as the first ever woman to forge a professional scientific career.
Once described as the "woman who understood Newton", Laura Bassi -- born in the city of Bologna in 1711 -- rose to celebrity status in Italy and all across the globe, gaining a reputation as being the best physics teacher of her generation and helping to develop the discipline of experimental physics.
Bassi held numerous ...
Targeting mosquito breeding sites could boost malaria control efforts in Africa and Asia
2013-08-29
A malaria control method that targets mosquito larvae and pupae as they mature in standing water could be an important supplementary measure in the fight against the disease, according to a new report.
The Cochrane review -- led by the London School of Hygiene & Tropical Medicine in collaboration with Durham University and other researchers in the UK and US -- is the first systematic review looking at using larval source management (LSM) to control malaria, which causes an estimated 660,000 deaths worldwide every year. It found evidence that the method may significantly ...
Intestinal flora determines health of obese people
2013-08-29
The international consortium MetaHIT, which includes the research group of Jeroen Raes (VIB / Vrije Universiteit Brussel), publishes in the leading journal Nature that there is a link between richness of bacterial species in the intestines and the susceptibility for medical complications related to obesity. The researchers demonstrated that people with fewer bacterial species in their intestines are more likely to develop complications, such as cardiovascular diseases and diabetes. A flora with decreased bacterial richness appears to function entirely differently to the ...
The science of collaboration
2013-08-29
CAMBRIDGE, Mass-- It's a long, expensive, risky road to turn a scientific breakthrough into a treatment that can help patients. Fewer organizations are trying to tackle the challenges alone, says a new paper from MIT researchers published August 28 in the journal Science Translational Medicine.
An essential new way to move discoveries forward has emerged in the form of multi-stakeholder collaborations involving three or more different types of organizations, such as drug companies, government regulators and patient groups, write Magdalini Papadaki, a research associate, ...
Researchers discover a potential cause of autism
2013-08-29
CHAPEL HILL, N.C. -- Problems with a key group of enzymes called topoisomerases can have profound effects on the genetic machinery behind brain development and potentially lead to autism spectrum disorder (ASD), according to research announced today in the journal Nature. Scientists at the University of North Carolina School of Medicine have described a finding that represents a significant advance in the hunt for environmental factors behind autism and lends new insights into the disorder's genetic causes.
"Our study shows the magnitude of what can happen if topoisomerases ...
New Cassini data from Titan indicate a rigid, weathered ice shell
2013-08-29
An analysis of gravity and topography data from Saturn's largest moon, Titan, has revealed unexpected features of the moon's outer ice shell. The best explanation for the findings, the authors said, is that Titan's ice shell is rigid and that relatively small topographic features on the surface are associated with large roots extending into the underlying ocean. The study is published in the August 29 issue of the journal Nature.
Led by planetary scientists Douglas Hemingway and Francis Nimmo at the University of California, Santa Cruz, the study used new data from NASA's ...