PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Nanorobot for transporting drugs in the body

2013-12-02
(Press-News.org) Contact information: Birgitta R. Knudsen
brk@mb.au.dk
45-60-20-26-73
Aarhus University
Nanorobot for transporting drugs in the body

A nanorobot is a popular term for molecules with a unique property that enables them to be programmed to carry out a specific task. In collaboration with colleagues in Italy and the USA, researchers at Aarhus University have now taken a major step towards building the first nanorobot of DNA molecules that can encapsulate and release active biomolecules.

In time, the nanorobot (also called a DNA nanocage) will no doubt be used to transport medications around in the body and thereby have a targeted effect on diseased cells.

Design using the body's natural molecules

Using DNA self-assembly, the researchers designed eight unique DNA molecules from the body's own natural molecules. When these molecules are mixed together, they spontaneously aggregate in a usable form – the nanocage (see figure).

The nanocage has four functional elements that transform themselves in response to changes in the surrounding temperature. These transformations either close (figure 1A) or open (figure 1B) the nanocage. By exploiting the temperature changes in the surroundings, the researchers trapped an active enzyme called horseradish peroxidase (HRP) in the nanocage (figure 1C). They used HRP as a model because its activity is easy to trace.

This is possible because the nanocage's outer lattice has apertures with a smaller diameter than the central spherical cavity. This structure makes it possible to encapsulate enzymes or other molecules that are larger than the apertures in the lattice, but smaller than the central cavity.

The researchers have just published these results in the renowned journal ACS Nano. Here the researchers show how they can utilise temperature changes to open the nanocage and allow HRP to be encapsulated before it closes again.

They also show that HRP retains its enzyme activity inside the nanocage and converts substrate molecules that are small enough to penetrate the nanocage to products inside.

The encapsulation of HRP in the nanocage is reversible, in such a way that the nanocage is capable of releasing the HRP once more in reaction to temperature changes. The researchers also show that the DNA nanocage – with its enzyme load – can be taken up by cells in culture.

Looking towards the future, the concept behind this nanocage is expected to be used for drug delivery, i.e. as a means of transport for medicine that can target diseased cells in the body in order to achieve a more rapid and more beneficial effect.



INFORMATION:

The research was carried out at the Department of Molecular Biology and Genetics and the Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, in collaboration with researchers from Duke University (USA) and the University of Rome (Italy).

Link to the scientific article in ACS Nano:

http://pubs.acs.org/doi/abs/10.1021/nn4030543

For more information, please contact

Associate Professor Birgitta R. Knudsen
Department of Molecular Biology and Genetics/Interdisciplinary Nanoscience Centre
Aarhus University, Denmark
brk@mb.au.dk – mobile: +45 6020 2673

Postdoctoral Fellow Sissel Juul
Department of Biomedical Engineering
Duke University, Durham, North Carolina, USA
Sissel.juul@duke.edu – mobile: +1 919 323 2291



ELSE PRESS RELEASES FROM THIS DATE:

New report illustrates persistent global burden of anemia among high-risk populations

2013-12-02
New report illustrates persistent global burden of anemia among high-risk populations (WASHINGTON, December 2, 2013) – Despite increasing efforts to diagnose and treat anemia worldwide, there remains a surprisingly large global burden of the disease, particularly ...

Researchers unlock a new means of growing intestinal stem cells

2013-12-02
Researchers unlock a new means of growing intestinal stem cells Studying these cells could lead to new treatments for diseases ranging from gastrointestinal disease to diabetes CAMBRIDGE, MA -- Researchers at MIT and Brigham and Women's Hospital have shown ...

Mice can inherit learned sensitivity to a smell

2013-12-02
Mice can inherit learned sensitivity to a smell Trauma can scar people so indelibly that their children are affected. History provides examples of generations traumatized by war and starvation, whose children experience altered physiology. Now researchers at Yerkes ...

Forget the needle consider the haystack

2013-12-02
Forget the needle consider the haystack Uncovering hidden structures in massive data collections Advances in computer storage have created collections of data so huge that researchers often have trouble uncovering critical patterns in connections ...

Living with chronic pain: The daily struggle with a 'new self'

2013-12-02
Living with chronic pain: The daily struggle with a 'new self' People who suffer with chronic musculoskeletal pain face a daily struggle with their sense of self and find it difficult to prove the legitimacy of their condition. A new study, funded by the National Institute ...

Oxygen levels increase and decrease the effectiveness of anti-inflammatory therapies

2013-12-02
Oxygen levels increase and decrease the effectiveness of anti-inflammatory therapies New research published in the Journal of Leukocyte Biology suggests that the effectiveness of anti-inflammatory glucocorticoids may be related to ...

Understanding hearing

2013-12-02
Understanding hearing Computer models of neuronal sound processing in the brain lead to cochlear implant improvements This news release is available in German. Intact hearing is a prerequisite for learning to speak. This is why children ...

Newly discovered human peptide may become a new treatment for diabetes

2013-12-02
Newly discovered human peptide may become a new treatment for diabetes New research in The FASEB Journal suggests that humanin, a peptide produced by the human body, increases the metabolism of glucose in beta cells, which in turn ...

Salk scientists crack riddle of important drug target

2013-12-02
Salk scientists crack riddle of important drug target New method for determining structure of key cellular receptors could speed drug development LA JOLLA, CA---- A new approach to mapping how proteins interact with each other, developed at the Salk Institute for Biological Studies, ...

Difficult dance steps: Team learns how membrane transporter moves

2013-12-02
Difficult dance steps: Team learns how membrane transporter moves CHAMPAIGN, Ill. — Researchers have tried for decades to understand the undulations and gyrations that allow transport proteins to shuttle molecules from one side of a cell membrane ...

LAST 30 PRESS RELEASES:

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

Industrial snow: Factories trigger local snowfall by freezing clouds

Backyard birds learn from their new neighbors when moving house

New study in Science finds that just four global policies could eliminate more than 90% of plastic waste and 30% of linked carbon emissions by 2050

Breakthrough in capturing 'hot' CO2 from industrial exhaust

New discovery enables gene therapy for muscular dystrophies, other disorders

Anti-anxiety and hallucination-like effects of psychedelics mediated by distinct neural circuits

How do microbiomes influence the study of life?

Plant roots change their growth pattern during ‘puberty’

Study outlines key role of national and EU policy to control emissions from German hydrogen economy

Beloved Disney classics convey an idealized image of fatherhood

Sensitive ceramics for soft robotics

Trends in hospitalizations and liver transplants associated with alcohol-induced liver disease

[Press-News.org] Nanorobot for transporting drugs in the body