(Press-News.org) Contact information: Richard Lewis
richard-c-lewis@uiowa.edu
319-384-0012
University of Iowa
A quicker, cheaper way to detect staph in the body
Synthetic probe identifies staph bacteria without need for biopsies
Chances are you won't know you've got a staph infection until the test results come in, days after the symptoms first appear. But what if your physician could identify the infection much more quickly and without having to take a biopsy and ship it off for analysis?
Researchers at the University of Iowa may have found a way. The team has created a noninvasive chemical probe that detects a common species of staph bacteria in the body. The probe ingeniously takes advantage of staph's propensity to slash and tear at DNA, activating a beacon of sorts that lets doctors know where the bacteria are wreaking havoc.
"We've come up with a new way to detect staph bacteria that takes less time than current diagnostic approaches," says James McNamara, assistant professor in internal medicine at the UI and the corresponding author of the paper published Feb. 2 in Nature Medicine. "It builds on technology that's been around a long time, but with an important twist that allows our probe to be more specific and to last longer."
The UI-developed probe targets Staphylococcus aureus, a species of staph bacteria common in hospitals and found in the general public as well. The bacteria causes skin infections, can spread to the joints and bones and can be fatal, particularly to those with weakened immune systems.
"Every year in the U.S., half a million people become infected by S. aureus bacteria, and 20,000 of those who become infected die," adds Frank Hernandez, a post-doctoral researcher at the UI and first author on the paper. "We believe that we are significantly improving the actual methods for detecting bacteria with a simple approach, which we expect to be cheap, fast and reliable."
What makes staph especially troublesome is doctors don't know the bacteria are in the body until they get the biopsy results, which usually takes days. "They're flying blind, so to speak," McNamara says. "It's the state of medicine at this time."
The UI team created a synthetic probe with two unique features. On one end is a molecule that gives off light under certain conditions. On the other end is another molecule that blocks that light. In other words, the particle, as designed, cancels itself out, leaving itself undetectable inside the body.
This is important due to what staph bacteria will do to the particle. In tests, nucleases (or enzymes) produced by the staph bacteria cleave the particles, like a warrior wielding a sword. (Why it does this is unclear, but scientists believe it's a clever way for staph, which can't move by itself, to spread beyond the molasses-like environment created when DNA leaks from infected, dying cells.) In any event, when staph cleaves the probe, it separates the light-emitting molecule from the light-blocking molecule, which then drifts too far away to block light. And, so with the right equipment, doctors would be able to see the light-emitting molecules and know that staph are raging there.
Outfitting such particles is not altogether new, but McNamara and his colleagues produced a probe that lasts longer—by several hours longer for certain types.
"We designed a tracking system that specifically identifies bacterial body localization in less than one hour," says Hernandez, a Colombian who for years has been working on probes to detect harmful bacteria.
Just as important, the UI probe has been chemically modified so that it's shredded only by the staph bacteria's nuclease and not by a nuclease secreted by normal, healthy cells. The team further tested the probe in mice and human serum and report that it performed as expected.
"That's the central idea, the underlying concept of our approach," says McNamara, whose primary appointment is in the Carver College of Medicine. "If the probe gets cleaved by serum nucleases, then our probe would be lit up all over the bloodstream. But since it's split only by staph nucleases, then we can pinpoint where the staph bacteria are active."
The team, which applied in fall 2012 for a final U.S. patent for the probe, plans to refine the probe, so it can be detected deeper in the body and to test its performance with catheter infections, according to McNamara.
McNamara acknowledges previous research by Arthur Arnone, UI professor emeritus in biochemistry, who was the first to define the structure of the S. aureus nuclease.
INFORMATION:
Contributing authors from the UI include Michael Olson, Luiza Hernandez, David Meyerholz, Daniel Thedens, Alexander Horswill. Lingyan Huang, Kristy Powers, and Mark Behlke from Integrated DNA Technologies in Coralville, Iowa also contributed to the study.
The National Institutes of Health (grant numbers AI 083211 and R21 AI 101391) funded the research. Hernandez is supported through a fellowship from the American Heart Association.
A quicker, cheaper way to detect staph in the body
Synthetic probe identifies staph bacteria without need for biopsies
2014-02-03
ELSE PRESS RELEASES FROM THIS DATE:
Red alert: Body kills 'spontaneous' blood cancers on a daily basis
2014-02-03
Immune cells undergo 'spontaneous' changes on a daily basis that could lead to cancers if not for the diligent surveillance of our immune system, Melbourne scientists have found.
The ...
Stanford researchers discover how brain regions work together, or alone
2014-02-03
Stanford researchers ...
Split decision: Stem cell signal linked with cancer growth
2014-02-03
Researchers at the University of California, San Diego School of Medicine have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential ...
Making your brain social
2014-02-03
In many people with autism and other neurodevelopmental disorders, different parts of the brain don't talk to each other very well. Scientists have now identified, ...
Transcendental Meditation reduces teacher stress and burnout, new research shows
2014-02-03
A new study published in The Permanente Journal (Vol. 18, No.1) on ...
Positive feelings about race, ethnicity tied to stronger development in minority youth
2014-02-03
The more positively minority youth feel about their ethnicity or race, the fewer symptoms of depression and emotional and behavior problems they have. That's the ...
For young African-Americans, emotional support buffers the biological toll of racial discrimination
2014-02-03
African American youth who report experiencing frequent discrimination during adolescence are at risk for developing heart disease, high blood pressure, ...
'I know it but I won't say it'
2014-02-03
Previous research has suggested that shy children have difficulties with language. Now, a new longitudinal study paints a more nuanced picture. ...
Hardships explain much of hospital asthma readmissions among black children and teens
2014-02-03
Black children are twice as likely as white children to be readmitted to the hospital for asthma – a disparity due in large part to a greater burden of financial ...
Beliefs about HPV vaccine do not lead to initiation of sex or risky sexual behavior
2014-02-03
A new study may alleviate concerns that the human papillomavirus (HPV) vaccine leads to either the initiation ...
LAST 30 PRESS RELEASES:
How rice plants tell head from toe during early growth
Scientists design solar-responsive biochar that accelerates environmental cleanup
Construction of a localized immune niche via supramolecular hydrogel vaccine to elicit durable and enhanced immunity against infectious diseases
Deep learning-based discovery of tetrahydrocarbazoles as broad-spectrum antitumor agents and click-activated strategy for targeted cancer therapy
DHL-11, a novel prieurianin-type limonoid isolated from Munronia henryi, targeting IMPDH2 to inhibit triple-negative breast cancer
Discovery of SARS-CoV-2 PLpro inhibitors and RIPK1 inhibitors with synergistic antiviral efficacy in a mouse COVID-19 model
Neg-entropy is the true drug target for chronic diseases
Oxygen-boosted dual-section microneedle patch for enhanced drug penetration and improved photodynamic and anti-inflammatory therapy in psoriasis
Early TB treatment reduced deaths from sepsis among people with HIV
Palmitoylation of Tfr1 enhances platelet ferroptosis and liver injury in heat stroke
Structure-guided design of picomolar-level macrocyclic TRPC5 channel inhibitors with antidepressant activity
Therapeutic drug monitoring of biologics in inflammatory bowel disease: An evidence-based multidisciplinary guidelines
New global review reveals integrating finance, technology, and governance is key to equitable climate action
New study reveals cyanobacteria may help spread antibiotic resistance in estuarine ecosystems
Around the world, children’s cooperative behaviors and norms converge toward community-specific norms in middle childhood, Boston College researchers report
How cultural norms shape childhood development
University of Phoenix research finds AI-integrated coursework strengthens student learning and career skills
Next generation genetics technology developed to counter the rise of antibiotic resistance
Ochsner Health hospitals named Best-in-State 2026
A new window into hemodialysis: How optical sensors could make treatment safer
High-dose therapy had lasting benefits for infants with stroke before or soon after birth
‘Energy efficiency’ key to mountain birds adapting to changing environmental conditions
Scientists now know why ovarian cancer spreads so rapidly in the abdomen
USF Health launches nation’s first fully integrated institute for voice, hearing and swallowing care and research
Why rethinking wellness could help students and teachers thrive
Seabirds ingest large quantities of pollutants, some of which have been banned for decades
When Earth’s magnetic field took its time flipping
Americans prefer to screen for cervical cancer in-clinic vs. at home
Rice lab to help develop bioprinted kidneys as part of ARPA-H PRINT program award
Researchers discover ABCA1 protein’s role in releasing molecular brakes on solid tumor immunotherapy
[Press-News.org] A quicker, cheaper way to detect staph in the bodySynthetic probe identifies staph bacteria without need for biopsies