(Press-News.org) Contact information: Mark Alber
malber@nd.edu
574-631-8371
University of Notre Dame
Paper offers insights into network that plays crucial role in cell function and disease
A new research paper from the labs of University of Notre Dame researchers Holly Goodson and Mark Alber helps resolve an ongoing debate about the assembly of a subcellular network that plays a critical role in cell function and disease.
Goodson and her former postdoctoral fellow Kamlesh Gupta (now a senior scientist at W. M. Keck Center for Transgene Research) from the Department of Chemistry and Biochemistry teamed up with Alber's group from the Department of Applied and Computational Mathematics and Statistics, to study the dynamical behavior of subcellular fibers called microtubules. The microtubule cytoskeleton is a dynamic polymer network that plays a crucial role in cell division, assembling into the remarkable machine that partitions the DNA. It also forms a transport network that helps cells distribute nutrients and building materials.
"This fiber network is analogous to a railway system, with the microtubules acting as rails for molecular engines that move cargo containers around the cell," Goodson said. "However, unlike human railway systems, which are stable over time, the microtubules are constantly being laid down and picked up."
The constant turnover of these structures is important because it enables the transport network to find its cargo and rearrange in response to cell movements and division. Because of its significance for cell function, this microtubule turnover process is the target of some key anticancer drugs.
The microtubule assembly and dynamics are precisely controlled, and a key regulator is the microtubule destabilizer known as stathmin. Stathmin's precise method of action has been open to debate and has remained controversial. One proposed model is that it reduces polymer indirectly by sequestering microtubule units. Another model is that stathmin acts directly on microtubules by an as yet unknown mechanism.
The new paper by the Goodson and Alber groups provides a resolution to this debate by explaining how stathmin works. The experiments (primarily designed and performed by Kamlesh Gupta) present experimental evidence that stathmin can act directly on microtubules and it does so by binding and destabilizing segments of the assembling microtubule before they can be incorporated into the final microtubule structure. Accompanying computer simulations show that this type of molecular activity could produce the experimentally observed effects of microtubule dynamics.
"This work is significant because this disassembly process is essential for basic cell survival and because stathmin, also called oncoprotein 18, is dramatically over produced in a number of cancers," Alber said. "Understanding how the protein works is an important step towards figuring out how to inhibit it, which may provide a route for new anti-cancer drugs."
###
The research effort combined Goodson's expertise in biochemistry and cell biology and Alber's expertise in mathematical and computational biology resulting in an interdisciplinary approach that used both experiments and computer simulations. The researchers are members of Notre Dame's Center for Biocomplexity. The center's researchers come from different departments in the Colleges of Science and Engineering and are working together to meld physical, mathematical and computational approaches with those of modern biology to understand biomedical problems in a quantitative and predictive way.
The National Science Foundation funded collaboration's paper appeared last month in the Proceedings of the National Academy of Sciences (PNAS).
Paper offers insights into network that plays crucial role in cell function and disease
2014-02-06
ELSE PRESS RELEASES FROM THIS DATE:
Will your child be a slim adult?
2014-02-06
Will your child be a slim adult? A novel new study published in PLOS ONE asked 532 international English speaking adults to submit or "crowd-source" predictors ...
Health Affairs examines successes and missing links in connected health
2014-02-06
You can successfully integrate technology into patient care, but it isn't easy. Just ask Kaiser Permanente Northern California (KPNC) ...
NASA sees Tropical Cyclone Edna affecting new Caledonia
2014-02-06
NASA's Aqua satellite spotted two storms in one image in the Southern Pacific Ocean as Tropical Cyclone Edna brushes by New Caledonia and an extra-tropical storm lingers west of New Zealand.
New Caledonia warnings ...
Crossover sound
2014-02-06
We all learn in high school science about the dual nature of light - that it exists as both waves and quantum particles called photons. It is this duality of light that enables ...
Grasshoppers are what they eat
2014-02-06
PUBLIC RELEASE DATE: 5-Feb-2014
[
| E-mail
]
var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more"
Share
Contact: Beth Parada
apps@botany.org
American Journal of Botany
Grasshoppers are what they eat
New method to extract plant DNA from grasshopper guts improves understanding of plant-insect interactions
VIDEO:
This is a demonstration of grasshopper ...
Heavy metal in the early cosmos
2014-02-06
Ab initio: "From the beginning."
It's a term used in science to describe ...
New study finds early universe 'warmed up' later than previously believed
2014-02-06
A new study from Tel Aviv University reveals that black holes, formed from the first stars in our ...
Whales and human-related activities overlap in African waters
2014-02-06
Scientists with the Wildlife Conservation Society, Oregon State University, Stanford ...
Obesity treatment using stem cells is the topic of 2013's most-visited news release on EurekAlert!
2014-02-06
For the second year in a row, obesity research features prominently in the group of 10 most-visited news releases posted on EurekAlert! ...
Fruit fly microRNA research at Rutgers-Camden offers clues to aging process
2014-02-06
CAMDEN — Diseases like Alzheimer's and Huntington's are often associated with aging, but the biological link between the two is less certain. Researchers at Rutgers University–Camden ...