(Press-News.org) CML has been a research topic for more than five decades, due to its wide applications in propulsion design. Mixing in CML is controlled by the compressibility effects of velocity and density variations over the mixing layer, and quantified by the growth rate of CML. However, the lack of understanding of various definitions of mixing thicknesses has yielded scatter in analyzing experimental data. Prof. SHE ZhenSu and his colleagues at the State Key Laboratory for Turbulence and Complex Systems, Peking University investigated the growth of compressible mixing layer by introducing an SED theory. Applying the method to experimental data, they provided a solid evidence for the nonlinear growth in CML. Their work, entitled "Experimental evidence for non-linear growth in compressible mixing layer," was published in SCIENCE CHINA Physics, Mechanics & Astronomy. 2014, Vol 57(5).
The study of fluid mixing enhancement at high Mach numbers is of critical value to engineering applications such as the design of scramjet/ramjet engines of high-speed vehicles. The impediment to a perfect design is the lack of understanding of compressible turbulence. One found that an increase of compressibility tends to stabilize turbulent flows and reduce the growth rate of CML. Passive effects of compressibility are obvious – chemical reactions are delayed, and the mixing length has to be extended. Reducing extra weight and size of the engine is always a challenge for engine design.
In order to understand the underlying physics of CML and find effective control strategies to enhance the mixing in supersonic flow, researchers take the planar compressible mixing layer as a simplified and conceptualized model in their experimental or numerical studies. It produces the mixing layer by introducing two parallel super-/supersonic or super-/subsonic streams. This experimental configuration allows for a clear visualization and detailed measurement.
Previous studies of CML have shown that the flow undergoes at least three stages while convecting downstream — (a) formation of Brown-Roshko vortices (a type of coherent structures) being transitioned from the parallel flow, (b) formation of secondary vortices and the cascade of the coherent vortices, and (c) the well-developed turbulent shear flow, though other structures have been observed when applying different conditions. A wealth of results have enriched our knowledge of the compressible shear flows, but how to analyze the massive experimental and numerical data, and to objectively and reliably deduce physical measures remains an open question.
She's team has presented a new framework called SED, which aims at using a set of relevant statistical quantities (called order functions) for a quantitative description of the ensemble means. In this work, the SED approach yields a set of gray-level ensemble quantities for a turbulent compressible mixing layer, when analyzing experimental images of the planar laser Mie scattering (PLMS) technique, at two convective Mach numbers, Mc=0.11 (M1=2.0, M2=1.5) and 0.47 (M1=2.0, M2=0.6), which were obtained by seeding ethanol into the low- or the high-speed stream by an atomizing spray nozzle, with ethanol droplets less than 30 μm in diameter. The images show clearly a set of transitional coherent structures (CS) of a Brown-Roshko (BR) type or by a Kelvin-Helmholtz instability. The eruption and shifting of the mixing layer were observed at Mc = 0.11. Three-dimensionality of the flow is visible at Mc = 0.47. Hence, a CML exhibits typical features of supersonic shear flow.
The ensemble of the transverse PLMS gray-level was analyzed in the SED framework. The gray-level images are shown to exhibit a similarity, which is the base for developing the GLEAM method. The GLEAM is able to determine the thickness and growth rate of CML as a function of the streamwise location, as illustrated in Figure 1. Nonlinear growth of the mixing layer is shown to exist in the development of this CML.
The growth rate normalized by the incompressible mixing layer at the same density and velocity ratio was used to compare the results at different flow conditions. Four situations are identified: for Mc = 0.11, Stage I corresponds to the situation with coherent structures generated with the Kelvin-Helmholtz instability with a uniform scale, while vortex stretching and distortion are significantly more severe in Stage II. For Mc = 0.47, Stage I contains no discernible coherent structures, due to the generation of relatively small-scale structures at this high convective Mach number; but at stage II, large-scale motions become dominant, hence one observes a smaller growth rate in this stage. Thus, it is interesting that a lower growth rate is associated with large-scale vortices at both Mc.
In addition, the effects of incoming boundary layers are observed by studying the relation between the scale of the boundary layers and the growth rate. The study presents that, besides compressibility effects, the inflow condition also accounts for the magnitude of the growth rate. The results show that the GLEAM is effective in quantifying the thickness of CML, and may be applied to the investigation of the ensemble property of other compressible shear flows.
INFORMATION:
See the article:
Wang T J, Chen J, Shi X T, et al. Experimental evidence for non-linear growth in compressible mixing layer. Sci China-Phys Mech Astron, 2014, 57: 963–970, doi:10.1007/s11433-014-5432-2
http://phys.scichina.com:8083/sciGe/EN/abstract/abstract508794.shtml
http://link.springer.com/article/10.1007%2Fs11433-014-5432-2
Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.
http://www.scichina.com/
On quantification of the growth of compressible mixing layer
2014-05-22
ELSE PRESS RELEASES FROM THIS DATE:
Nanoshell-emitters hybrid nanoobject was proposed as promising 2-photon fluorescence probe
2014-05-22
Two-photon excitation fluorescence is growing in popularity in the bioimaging field but is limited by fluorophores' extremely low two-photon absorption cross-section. The researcher Dr. Guowei Lu and co-workers from State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, are endeavoring to develop efficient fluorescent probes with improved two-photon fluorescence (TPF) performance. They theoretically present a promising bright probe using gold nanoshell to improve the TPF performances of fluorescent emitters. Their work, entitled "Plasmonic-Enhanced ...
Stanford research shows importance of European farmers adapting to climate change
2014-05-22
A new Stanford study finds that due to an average 3.5 degrees Fahrenheit of warming expected by 2040, yields of wheat and barley across Europe will drop more than 20 percent.
New Stanford research reveals that farmers in Europe will see crop yields affected as global temperatures rise, but that adaptation can help slow the decline for some crops.
For corn, the anticipated loss is roughly 10 percent, the research shows. Farmers of these crops have already seen yield growth slow down since 1980 as temperatures have risen, though other policy and economic factors have ...
Symbiosis or capitalism? A new view of forest fungi
2014-05-22
The so-called symbiotic relationship between trees and the fungus that grow on their roots may actually work more like a capitalist market relationship between buyers and sellers, according to the new study published in the journal New Phytologist.
Recent experiments in the forests of Sweden had brought into a question a long-held theory of biology: that the fungi or mycorrhizae that grow on tree roots work with trees in a symbiotic relationship that is beneficial for both the fungi and the trees, providing needed nutrients to both parties. These fungi, including many ...
Stanford, MIT scientists find new way to harness waste heat
2014-05-22
Vast amounts of excess heat are generated by industrial processes and by electric power plants. Researchers around the world have spent decades seeking ways to harness some of this wasted energy. Most such efforts have focused on thermoelectric devices – solid-state materials that can produce electricity from a temperature gradient – but the efficiency of such devices is limited by the availability of materials.
Now researchers at Stanford University and the Massachusetts Institute of Technology have found a new alternative for low-temperature waste-heat conversion into ...
A new target for alcoholism treatment: Kappa opioid receptors
2014-05-22
Philadelphia, PA, May 22, 2014 – The list of brain receptor targets for opiates reads like a fraternity: Mu Delta Kappa. The mu opioid receptor is the primary target for morphine and endogenous opioids like endorphin, whereas the delta opioid receptor shows the highest affinity for endogenous enkephalins. The kappa opioid receptor (KOR) is very interesting, but the least understood of the opiate receptor family.
Until now, the mu opioid receptor received the most attention in alcoholism research. Naltrexone, a drug approved by the U.S. Food and Drug Administration for ...
Higher discharge rate for BPD in children and adolescents in the US compared to UK
2014-05-22
Washington D.C., May 22, 2014 – A study published in the June 2014 issue of the Journal of the American Academy of Child and Adolescent Psychiatry found a very much higher discharge rate for pediatric bipolar (PBD) in children and adolescents aged 1-19 years in the US compared to England between the years 2000-2010.
Using the English NHS Hospital Episode Statistics (HES) dataset and the US National Hospital Discharge Survey (NHDS) to compare US and English discharge rates for PBD over the period 2000-2010, the authors found a 72.1-fold higher discharge rate for pediatric ...
Liquid crystal as lubricant
2014-05-22
Lubricants are used in motors, axels, ventilators and manufacturing machines. Although lubricants are widely used, there have been almost no fundamental innovations for this product in the last twenty years. Together with a consortium, the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg has developed an entirely new class of substance that could change everything: liquid crystalline lubricant. Its chemical makeup sets it apart; although it is a liquid, the molecules display directional properties like crystals do. When two surfaces move in opposite directions, ...
Fossil avatars are transforming palaeontology
2014-05-22
Palaeontology has traditionally proceeded slowly, with individual scientists labouring for years or even decades over the interpretation of single fossils which they have gradually recovered from entombing rock, sand grain by sand grain, using all manner of dental drills and needles.
The introduction of X-ray tomography has revolutionized the way that fossils are studied, allowing them to be virtually extracted from the rock in a fraction of the time necessary to prepare specimens by hand and without the risk of damaging the fossil.
The resulting fossil avatars not ...
Drug-target database lets researchers match old drugs to new uses
2014-05-22
There are thousands of drugs that silence many thousands of cancer-causing genetic abnormalities. Some of these drugs are in use now, but many of these drugs are sitting on shelves or could be used beyond the disease for which they were originally approved. Repurposing these drugs depends on matching drugs to targets. A study recently published in the journal Bioinformatics describes a new database and pattern-matching algorithm that allows researchers to evaluate rational drugs and drug combinations, and also recommends a new drug combination to treat drug-resistant non-small ...
TSRI scientists catch misguided DNA-repair proteins in the act
2014-05-22
LA JOLLA, CA – May 22, 2014 – Accumulation of DNA damage can cause aggressive forms of cancer and accelerated aging, so the body's DNA repair mechanisms are normally key to good health. However, in some diseases the DNA repair machinery can become harmful. Scientists led by a group of researchers at The Scripps Research Institute (TSRI) in La Jolla, CA, have discovered some of the key proteins involved in one type of DNA repair gone awry.
The focus of the new study, published in the May 22, 2014 edition of the journal Cell Reports, is a protein called Ring1b. The TSRI ...