(Press-News.org) VIDEO:
In this video, Professors Hay and Dixson talk about their research in Fiji and why marine protected areas might not be enough to help overfished areas recover.
Click here for more information.
Pacific corals and fish can both smell a bad neighborhood, and use that ability to avoid settling in damaged reefs.
Damaged coral reefs emit chemical cues that repulse young coral and fish, discouraging them from settling in the degraded habitat, according to new research. The study shows for the first time that coral larvae can smell the difference between healthy and damaged reefs when they decide where to settle.
Coral reefs are declining around the world. Overfishing is one cause of coral collapse, depleting the herbivorous fish that remove the seaweed that sprouts in damaged reefs. Once seaweed takes hold of a reef, a tipping point can occur where coral growth is choked and new corals rarely settle.
The new study shows how chemical signals from seaweed repel young coral from settling in a seaweed-dominated area. Young fish were also not attracted to the smell of water from damaged reefs. The findings suggest that designating overfished coral reefs as marine protected areas may not be enough to help these reefs recover because chemical signals continue to drive away new fish and coral long after overfishing has stopped.
"If you're setting up a marine protected area to seed recruitment into a degraded habitat, that recruitment may not happen if young fish and coral are not recognizing the degraded area as habitat," said Danielle Dixson, an assistant professor in the School of Biology at the Georgia Institute of Technology in Atlanta, and the study's first author.
The study was published August 22 in the journal Science. The research was sponsored by the National Science Foundation (NSF), the National Institutes of Health (NIH), and the Teasley Endowment to Georgia Tech.
The new study examined three marine areas in Fiji that had adjacent fished areas. The country has established no-fishing areas to protect its healthy habitats and also to allow damaged reefs to recover over time.
Juveniles of both corals and fishes were repelled by chemical cues from overfished, seaweed-dominated reefs but attracted to cues from coral-dominated areas where fishing is prohibited. Both coral and fish larvae preferred certain chemical cues from species of coral that are indicators of a healthy habitat, and they both avoided certain seaweeds that are indicators of a degraded habitat.
The study for the first time tested coral larvae in a method that has been used previously to test fish, and found that young coral have strong preferences for odors from healthy reefs.
"Not only are coral smelling good areas versus bad areas, but they're nuanced about it," said Mark Hay, a professor in the School of Biology at Georgia Tech and the study's senior author. "They're making careful decisions and can say, 'settle or don't settle.'"
The study showed that young fish have an overwhelming preference for water from healthy reefs. The researchers put water from healthy and degraded habitats into a flume that allowed fish to choose to swim in one stream of water or the other. The researchers tested the preferences of 20 fish each from 15 different species and found that regardless of species, family or trophic group, each of the 15 species showed up to an eight times greater preference for water from healthy areas.
The researchers then tested coral larvae from three different species and found that they preferred water from the healthy habitat five-to-one over water from the degraded habitat.
Chemical cues from corals also swayed the fishes' preferences, the study found. The researchers soaked different corals in water and studied the behavior of fish in that water, which had picked up chemical cues from the corals. Cues of the common coral Acropora nasuta enhanced attraction to water from the degraded habitat by up to three times more for all 15 fishes tested. A similar preference was found among coral larvae.
Acropora corals easily bleach, are strongly affected by algal competition, and are prone to other stresses. The data demonstrate that chemical cues from these corals are attractive to fish and corals because they are found primarily in healthy habitats. Chemical cues from hardy corals, which can grow even in overfished habitats, were less attractive to juvenile fishes or corals.
The researchers also soaked seaweed in water and tested fish and coral preferences in that water. Cues from the common seaweed Sargassum polycystum, which can bloom and take over a coral reef, reduced the attractiveness of water to fish by up to 86 percent compared to water without the seaweed chemical cues. Chemical cues from the seaweed decreased coral larval attraction by 81 percent.
"Corals avoided that smell more than even algae that's chemically toxic to coral but doesn't bloom," Dixson said.
Future work will involve removing plots of seaweed from damaged reefs and studying how that impacts reef recovery.
VIDEO:
In this video, Professors Hay and Dixson talk about their research in Fiji and why marine protected areas might not be enough to help overfished areas recover.
Click here for more information.
A minimum amount of intervention at the right time and the right place could jump start the recovery of overfished reefs, Hay said. That could bring fish back to the area so they settle and eat the seaweed around the corals. The corals would then get bigger because the seaweed is not overgrown. Bigger corals would then be more attractive to more fish.
"What this means is we probably need to manage these reefs in ways that help remove the most negative seaweeds and then help promote the most positive corals," Hay said.
INFORMATION:
This research is supported by the National Science Foundation (NSF), under award number OCE-0929119, and the National Institutes of Health, under award number U01-TW007401. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.
CITATION: Dixson et al., "Chemically mediated behavior of recruiting corals and fishes: A tipping
point that may limit reef recovery." (August 2014, Science). http://dx.doi.org/10.1126/science.1255057
Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews
Marine protected areas might not be enough to help overfished reefs recover
Young corals, fish turned off by smell of damaged habitats
2014-08-21
ELSE PRESS RELEASES FROM THIS DATE:
Cause of global warming hiatus found deep in the Atlantic Ocean
2014-08-21
Following rapid warming in the late 20th century, this century has so far seen surprisingly little increase in the average temperature at the Earth's surface. At first this was a blip, then a trend, then a puzzle for the climate science community.
More than a dozen theories have now been proposed for the so-called global warming hiatus, ranging from air pollution to volcanoes to sunspots. New research from the University of Washington shows that the heat absent from the surface is plunging deep in the north and south Atlantic Ocean, and is part of a naturally occurring ...
NIH scientists establish new monkey model of severe MERS-CoV disease
2014-08-21
WHAT:
National Institutes of Health (NIH) scientists have found that Middle East respiratory syndrome coronavirus (MERS-CoV) infection in marmosets closely mimics the severe pneumonia experienced by people infected with MERS-CoV, giving scientists the best animal model yet for testing potential treatments. Researchers at NIH's National Institute of Allergy and Infectious Diseases (NIAID) used marmosets after predicting in computer models that the animals could be infected with MERS-CoV based on the binding properties of the virus.
The same NIAID group in December 2012 ...
How hummingbirds evolved to detect sweetness
2014-08-21
Everything about hummingbirds is rapid. An iridescent blur to the human eye, their movements can be captured with clarity only by high-speed video.
Slowed down on replay, their wings thrum like helicopter blades as they hover near food. Their hearts beat 20 times a second and their tongues dart 17 times a second to slurp from a feeding station.
It takes only three licks of their forked, tube-like tongues to reject water when they expect nectar. They pull their beaks back, shake their heads and spit out the tasteless liquid. They also are not fooled by the sugar substitute ...
From dandruff to deep sea vents, an ecologically hyper-diverse fungus
2014-08-21
A ubiquitous skin fungus linked to dandruff, eczema and other itchy, flaky maladies in humans has now been tracked to even further global reaches—including Hawaiian coral reefs and the extreme environments of arctic soils and deep sea vents.
A review in the scientific journal PLOS Pathogens considers the diversity, ecology, and distribution of the fungi of the genus Malassezia in light of new insights gained from screening environmental sequencing datasets from around the world.
University of Hawai'i at Mānoa scientist Anthony Amend discovered that members of this ...
New properties of rotating superfluids discovered in helium nanodroplets
2014-08-21
Liquid helium, when cooled down nearly to absolute zero, exhibits unusual properties that scientists have struggled to understand: it creeps up walls and flows freely through impossibly small channels, completely lacking viscosity. It becomes a new state of matter – a "superfluid."
Now, a large, international team of researchers led by scientists at USC, Stanford and Berkeley has used X-rays from a free-electron laser to peer inside individual droplets of liquid helium, exploring whether this liquid helium retains its superfluid characteristics even at microscopic scales ...
Severe drought is causing the western US to rise
2014-08-21
The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of Oceanography at UC San Diego have now discovered that the growing, broad-scale loss of water is causing the entire western U.S. to rise up like an uncoiled spring.
Investigating ground positioning data from GPS stations throughout the west, Scripps researchers Adrian Borsa, Duncan Agnew, and Dan Cayan found that the water shortage is causing an "uplift" effect up to ...
X-ray laser probes tiny quantum tornadoes in superfluid droplets
2014-08-21
An experiment at the Department of Energy's SLAC National Accelerator Laboratory revealed a well-organized 3-D grid of quantum "tornadoes" inside microscopic droplets of supercooled liquid helium – the first time this formation has been seen at such a tiny scale.
The findings by an international research team provide new insight on the strange nanoscale traits of a so-called "superfluid" state of liquid helium. When chilled to extremes, liquid helium behaves according to the rules of quantum mechanics that apply to matter at the smallest scales and defy the laws of classical ...
Researchers map quantum vortices inside superfluid helium nanodroplets
2014-08-21
Scientists have, for the first time, characterized so-called quantum vortices that swirl within tiny droplets of liquid helium. The research, led by scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), the University of Southern California, and SLAC National Accelerator Laboratory, confirms that helium nanodroplets are in fact the smallest possible superfluidic objects and opens new avenues to study quantum rotation.
"The observation of quantum vortices is one of the most clear and unique demonstrations of the quantum properties ...
Sunlight, not microbes, key to CO2 in Arctic
2014-08-21
CORVALLIS, Ore. – The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial activity.
However, a new study – funded by the National Science Foundation and published this week in the journal Science – concludes that sunlight and not bacteria is the key to triggering the production of CO2 from material released by Arctic soils.
The finding is particularly important, scientists say, because climate change could affect when ...
A novel 'man and machine' decision support system makes malaria diagnostics more effective
2014-08-21
A Finnish-Swedish research group at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, and Karolinska institutet, Stockholm, has developed a novel "man and machine" decision support system for diagnosing malaria infection. This innovative diagnostic aid was described in PLOS One scientific journal today, 21 August. The method is based on computer vision algorithms similar to those used in facial recognition systems combined with visualization of only the diagnostically most relevant areas. Tablet computers can be utilized in viewing the images.
In ...
LAST 30 PRESS RELEASES:
Breaking free from dependence on rare resources! A domestic high-performance permanent magnet emerges!
Symptoms of long-COVID can last up to two years after infection with COVID-19
Violence is forcing women in Northern Ireland into homelessness, finds new report
Latin American intensivists denounce economic and cultural inequities in the global scientific publishing system
Older adults might be more resistant to bird flu infections than children, Penn research finds
Dramatic increase in research funding needed to counter productivity slowdown in farming
How chemistry and force etch mysterious spiral patterns on solid surfaces
Unraveling the mysteries of polycystic kidney disease
Mother’s high-fat diet can cause liver stress in fetus, study shows
Weighing in on a Mars water debate
Researchers ‘seq’ and find a way to make pig retinal cells to advance eye treatments
Re-purposed FDA-approved drug could help treat high-grade glioma
Understanding gamma rays in our universe through StarBurst
Study highlights noninvasive hearing aid
NASA taps UTA to shape future of autonomous aviation
Mutations disrupt touch-based learning, study finds
Misha lived in zoos, but the elephant’s tooth enamel helps reconstruct wildlife migrations
Eat better, breathe easier? Research points to link between diet, lung cancer
Mesozoic mammals had uniform dark fur
Wartime destruction of Kakhovka Dam in Ukraine has long-term environmental consequences
NIH’s flat 15% funding policy is misguided and damaging
AI reveals new insights into the flow of Antarctic ice
Scientists solve decades-long Parkinson’s mystery
Spinning, twisted light could power next-generation electronics
A planetary boundary for geological resources: Limits of regional water availability
Astronomy’s dirty window to space
New study reveals young, active patients who have total knee replacements are unlikely to need revision surgery in their lifetime
Thinking outside the box: Uncovering a novel approach to brainwave monitoring
Combination immunotherapy before surgery may increase survival in people with head and neck cancer
MIT engineers turn skin cells directly into neurons for cell therapy
[Press-News.org] Marine protected areas might not be enough to help overfished reefs recoverYoung corals, fish turned off by smell of damaged habitats