(Press-News.org) VIDEO:
Learning a new skill is easier when it is related to an ability we already have. For example, a trained pianist can learn a new melody easier than learning how...
Click here for more information.
PITTSBURGH—Learning a new skill is easier when it is related to an ability we already have. For example, a trained pianist can learn a new melody easier than learning how to hit a tennis serve.
Scientists from the Center for the Neural Basis of Cognition (CNBC) – a joint program between Carnegie Mellon University and the University of Pittsburgh – have discovered a fundamental constraint in the brain that may explain why this happens. Published as the cover story in the August 28, 2014, issue of Nature, they found for the first time that there are limitations on how adaptable the brain is during learning and that these restrictions are a key determinant for whether a new skill will be easy or difficult to learn. Understanding the ways in which the brain's activity can be "flexed" during learning could eventually be used to develop better treatments for stroke and other brain injuries.
Lead author Patrick T. Sadtler, a Ph.D. candidate in Pitt's Department of Bioengineering, compared the study's findings to cooking.
"Suppose you have flour, sugar, baking soda, eggs, salt and milk. You can combine them to make different items — bread, pancakes and cookies — but it would be difficult to make hamburger patties with the existing ingredients," Sadtler said. "We found that the brain works in a similar way during learning. We found that subjects were able to more readily recombine familiar activity patterns in new ways relative to creating entirely novel patterns."
For the study, the research team trained animals to use a brain-computer interface (BCI), similar to ones that have shown recent promise in clinical trials for assisting quadriplegics and amputees.
"This evolving technology is a powerful tool for brain research," said Daofen Chen, program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH), which supported this research. "It helps scientists study the dynamics of brain circuits that may explain the neural basis of learning."
The researchers recorded neural activity in the subject's motor cortex and directed the recordings into a computer, which translated the activity into movement of a cursor on the computer screen. This technique allowed the team to specify the activity patterns that would move the cursor. The test subjects' goal was to move the cursor to targets on the screen, which required them to generate the patterns of neural activity that the experimenters had requested. If the subjects could move the cursor well, that meant that they had learned to generate the neural activity pattern that the researchers had specified.
The results showed that the subjects learned to generate some neural activity patterns more easily than others, since they only sometimes achieved accurate cursor movements. The harder-to-learn patterns were different from any of the pre-existing patterns, whereas the easier-to-learn patterns were combinations of pre-existing brain patterns. Because the existing brain patterns likely reflect how the neurons are interconnected, the results suggest that the connectivity among neurons shapes learning.
"We wanted to study how the brain changes its activity when you learn, and also how its activity cannot change. Cognitive flexibility has a limit — and we wanted to find out what that limit looks like in terms of neurons," said Aaron P. Batista, assistant professor of bioengineering at Pitt.
Byron M. Yu, assistant professor of electrical and computer engineering and biomedical engineering at Carnegie Mellon, believes this work demonstrates the utility of BCI for basic scientific studies that will eventually impact people's lives.
"These findings could be the basis for novel rehabilitation procedures for the many neural disorders that are characterized by improper neural activity," Yu said. "Restoring function might require a person to generate a new pattern of neural activity. We could use techniques similar to what were used in this study to coach patients to generate proper neural activity."
INFORMATION:
In addition to Sadtler, Batista and Yu, the research team included Pitt's Kristin Quick and Elizabeth Tyler-Kabara; CMU's Matthew Golub and Steven Chase; and Stephen Ryu of Stanford University and the Palo Alto Medical Foundation.
The CNBC is devoted to investigating the neural mechanisms that give rise to human cognitive abilities. The center integrates the strengths of the University of Pittsburgh in basic and clinical neuroscience with Carnegie Mellon's strengths in psychology, computer science, biological sciences and statistics, and sponsors an interdisciplinary graduate training program. The CNBC will celebrate its 20th anniversary of advancing brain, computation and behavior through research and education this fall. For more information, visit http://www.cnbc.cmu.edu/.
The research was funded by the NIH, National Science Foundation and the Burroughs Wellcome Fund.
For more information on how the brain's existing neural patterns show how learning can be difficult, watch the researchers discuss the study in this short video: http://youtu.be/9ihQkxtt6pM.
Flexing the brain: Why learning tasks can be difficult
Carnegie Mellon, Pitt research could lead to improved treatments for stroke or other brain injuries
2014-08-27
ELSE PRESS RELEASES FROM THIS DATE:
Stanford researchers work to understand gene expression across organisms
2014-08-27
Fruit flies and roundworms have long been used as model organisms to learn more about human biology and disease. Now, researchers at the Stanford University School of Medicine have found that although many aspects of regulatory networks are conserved among the three distantly related organisms, other differences have emerged over evolutionary time.
These differences may explain why, for example, worms slither, flies fly and humans walk on two legs, even though they all use the same basic genetic building blocks.
"We're trying to understand the basic principles that ...
Evolution used similar molecular toolkits to shape flies, worms, and humans
2014-08-27
Although separated by hundreds of millions of years of evolution, flies, worms, and humans share ancient patterns of gene expression, according to a massive Yale-led analysis of genomic data.
Two related studies led by scientists at Harvard and Stanford, also published Aug. 28 in the same issue of the journal Nature, tell a similar story: Even though humans, worms, and flies bear little obvious similarity to each other, evolution used remarkably similar molecular toolkits to shape them.
However, the same Yale lab reports in a separate paper published in the Proceedings ...
Neuroscientists reverse memories' emotional associations
2014-08-27
CAMBRIDGE, MA -- Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings.
A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics — a technique that uses light to control neuron activity.
The ...
Scientists map the 'editing marks' on fly, worm, human genomes
2014-08-27
The genome we inherited from our parents shapes many aspects of our lives. But in addition to our genome we have an epigenome that is set during development, but can be altered by our lifestyle habits and environmental exposures—and perhaps by those of our parents and grandparents.
The epigenome consists of chemical tags on our DNA and supporting proteins that determine whether genes are expressed or silenced.
This means we are deeply responsible for our own health, but also that it may be possible to diagnose and treat the many diseases caused by the deregulation of ...
Researchers switch emotion linked to memory
2014-08-27
Recalling an emotional experience, even years later, can bring back the same intense feelings. Researchers from the RIKEN-MIT Center for Neural Circuit Genetics revealed the brain pathway that links external events to the internal emotional state, forming one memory by engaging different brain areas. The study published in the journal Nature, also demonstrates that the positive or negative emotional valence of memory can be reversed during later memory recall.
The research team, led by Dr. Susumu Tonegawa, was interested in how brain structures like the hippocampus ...
Breaking benzene
2014-08-27
Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon?carbon bonds in these compounds plays an important role in the production of fuels and valuable chemicals from natural resources. However, aromatic carbon-carbon bonds are very stable and difficult to break. In the chemical industry, the cleavage of these bonds requires the use of solid catalysts at high temperatures, usually giving rise to a mixture of products, and the mechanisms are still poorly understood.
Now, in research published in Nature, Zhaomin Hou ...
Walking fish reveal how our ancestors evolved onto land
2014-08-27
VIDEO:
Polypterus senegalus walks across a sandy substrate. Fish use their fins and body in combination to move across a terrestrial substrate. Fins are planted one after the other to lift...
Click here for more information.
About 400 million years ago a group of fish began exploring land and evolved into tetrapods – today's amphibians, reptiles, birds, and mammals. But just how these ancient fish used their fishy bodies and fins in a terrestrial environment and what evolutionary ...
NIH issues finalized policy on genomic data sharing
2014-08-27
The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while protecting the privacy of research participants. The final policy was posted in the Federal Register Aug. 26, 2014 and published in the NIH Guide for Grants and Contracts Aug. 27, 2014.
Starting with funding applications submitted for a Jan. 25, 2015, receipt date, the policy will apply to all NIH-funded, large-scale human and non-human projects that ...
Scientists looking across human, fly and worm genomes find shared biology
2014-08-27
Researchers analyzing human, fly, and worm genomes have found that these species have a number of key genomic processes in common, reflecting their shared ancestry. The findings, appearing Aug. 28, 2014, in the journal Nature, offer insights into embryonic development, gene regulation and other biological processes vital to understanding human biology and disease.
The studies highlight the data generated by the modENCODE Project and the ENCODE Project, both supported by the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. ...
Worms, flies and humans... Our common genomic legacy, key to understanding cell biology
2014-08-27
This news release is available in Spanish. Genomes accumulate changes and mutations throughout evolution. These changes have resulted in a huge diversity of species and in different traits between us. But animal cells, whether they are from a fly or a human, work similarly: they have common molecular mechanisms.
Based on this premise, an international consortium with participation of scientists from the Centre for Genomic Regulation in Barcelona have compared the transcriptome (the RNA complement of a species' cell) of different animal species. They used data from ...
LAST 30 PRESS RELEASES:
High exposure to everyday chemicals linked to asthma risk in children
How can brands address growing consumer scepticism?
New paradigm of quantum information technology revealed through light-matter interaction!
MSU researchers find trees acclimate to changing temperatures
World's first visual grading system developed to combat microplastic fashion pollution
Teenage truancy rates rise in English-speaking countries
Cholesterol is not the only lipid involved in trans fat-driven cardiovascular disease
Study: How can low-dose ketamine, a ‘lifesaving’ drug for major depression, alleviate symptoms within hours? UB research reveals how
New nasal vaccine shows promise in curbing whooping cough spread
Smarter blood tests from MSU researchers deliver faster diagnoses, improved outcomes
Q&A: A new medical AI model can help spot systemic disease by looking at a range of image types
For low-risk pregnancies, planned home births just as safe as birth center births, study shows
Leaner large language models could enable efficient local use on phones and laptops
‘Map of Life’ team wins $2 million prize for innovative rainforest tracking
Rise in pancreatic cancer cases among young adults may be overdiagnosis
New study: Short-lived soda tax reinforces alternative presumptions on tax impacts on consumer behaviors
Fewer than 1 in 5 know the 988 suicide lifeline
Semaglutide eligibility across all current indications for US adults
Can podcasts create healthier habits?
Zerlasiran—A small-interfering RNA targeting lipoprotein(a)
Anti-obesity drugs, lifestyle interventions show cardiovascular benefits beyond weight loss
Oral muvalaplin for lowering of lipoprotein(a)
Revealing the hidden costs of what we eat
New therapies at Kennedy Krieger offer effective treatment for managing Tourette syndrome
American soil losing more nutrients for crops due to heavier rainstorms, study shows
With new imaging approach, ADA Forsyth scientists closely analyze microbial adhesive interactions
Global antibiotic consumption has increased by more than 21 percent since 2016
New study shows how social bonds help tool-using monkeys learn new skills
Modeling and analysis reveals technological, environmental challenges to increasing water recovery from desalination
Navy’s Airborne Scientific Development Squadron welcomes new commander
[Press-News.org] Flexing the brain: Why learning tasks can be difficultCarnegie Mellon, Pitt research could lead to improved treatments for stroke or other brain injuries