(Press-News.org) They emerge at night, while we sleep unaware, growing and spreading out as quickly as they can. And they are deadly. In a surprise finding that was recently published in Nature Communications, Weizmann Institute of Science researchers showed that nighttime is the right time for cancer to grow and spread in the body. Their findings suggest that administering certain treatments in time with the body's day-night cycle could boost their efficiency.
This finding arose out of an investigation into the relationships between different receptors in the cell – a complex network that we still do not completely understand. The receptors – protein molecules on the cell's surface or within cells – take in biochemical messages secreted by other cells and pass them on into the cell's interior. The scientists, led by Dr. Mattia Lauriola, a postdoctoral fellow in the research group of Prof. Yosef Yarden of the Weizmann Institute's Biological Regulation Department, working together with Prof. Eytan Domany of the Physics of Complex Systems Department, focused on two particular receptors. The first, the epidermal growth factor receptor, EGFR, promotes the growth and migration of cells, including cancer cells. The second binds to a steroid hormone called a glucocorticoid (GC). Glucocorticoids play a role in maintaining the body's energy levels during the day, as well as the metabolic exchange of materials. It is often called the stress hormone because its levels rise in stressful situations, rapidly bringing the body to a state of full alert.
With multiple receptors, the cell receives all sorts of messages at once, and some of these messages can take precedence over others. In the experiment, Lauriola and Yarden found that cell migration – the activity promoted by the EGF receptor – is suppressed when the GC receptor is bound to its steroid messenger.
Since the steroid levels peak during waking hours and drop off during sleep, the scientists asked how this might affect the second receptor – EGFR. Checking the levels of this activity in mice, they found that there was a significant difference: This receptor is much more active during sleep and quiescent during waking hours.
How relevant are these findings for cancers, particularly those which use the EGF receptors to grow and spread? To find out, the scientists gave Lapatinib – one of the new generation of cancer drugs – to mouse models of cancer. This drug, used to treat breast cancer, is designed to inhibit EGFR, and thus to prevent the growth and migration of the cancer cells. In the experiment, they gave the mice the drug at different times of day. The results revealed significant differences between the sizes of tumors in the different groups of mice, depending on whether they had been given the drug during sleep or waking hours. The experimental findings suggest that it is indeed the rise and fall in the levels of the GC steroids over the course of 24 hours that hinder or enable the growth of the cancer.
The conclusion, say the scientists, is that it could be more efficient to administer certain anticancer drugs at night.
"It seems to be an issue of timing," says Yarden. "Cancer treatments are often administered in the daytime, just when the patient's body is suppressing the spread of the cancer on its own. What we propose is not a new treatment, but rather a new treatment schedule for some of the current drugs."
INFORMATION:
Prof. Eytan Domany's research is supported by the Leir Charitable Foundations; Mordechai Segal, Israel; Louis and Fannie Tolz Collaborative Research Project. Prof. Domany is the incumbent of the Henry J. Leir Professorial Chair.
Prof. Yosef Yarden's research is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation; the Maurice and Vivienne Wohl Biology Endowment; the Louis and Fannie Tolz Collaborative Research Project; the European Research Council; and the Marvin Tanner Laboratory for Research on Cancer. Prof. Yarden is the incumbent of the Harold and Zelda Goldenberg Professorial Chair in Molecular Cell Biology.
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/
Over the years, researchers have described how some of the body's cells have giant channels – a kind of holes that completely uncritically allow both small and large molecules to penetrate into and out of the cell. The hypothesis is that these normally closed gatekeeper proteins in the cell membrane allow unrestricted access in the event of diseases such as myocardial infarction, stroke or Alzheimer's. If the hypothesis was correct, the obvious choice would be to look for novel drugs to block the relevant membrane proteins and in this way cure or prevent disease.
New ...
A specialist group of European researchers are studying the remains of prehistoric human settlements which are now submerged beneath our coastal seas. Some of these drowned sites are tens of thousands of years old. From the progressive discovery and analysis of these prehistoric remains, a new scientific field has emerged, combining the expertise from many disciplines including archaeology, oceanography and the geosciences. The new field is called Continental Shelf Prehistoric Research.
This rapidly evolving research field is the focus of a new European Marine Board ...
Since the first human fetal surgery was reported in 1965, several different fetal surgical procedures have been developed and perfected, resulting in significantly improved outcomes for many fetuses. However, the significant investments associated with this highly specialized service and quality metrics must be considered as more fetal treatment programs are developed.
Katharine D. Wenstrom, MD, director of the Division of Maternal-Fetal Medicine at Women & Infants Hospital of Rhode Island, co-director of the hospital's Integrated Program for High-Risk Pregnancy, and ...
WASHINGTON, Oct. 6, 2014 — It's happened to many of us: Half asleep in the morning, you finish brushing your teeth and reach for your daily glass of orange juice. After taking a big swig, you spit it back out, making a face like you've just chewed on a lemon. Turns out, a specific chemical in your toothpaste is responsible for that nasty taste. This week, Reactions explains why toothpaste and orange juice don't mix. Learn all about it at https://www.youtube.com/watch?v=9X5_gtel-c0.
Subscribe to the series at Reactions YouTube, and follow us on Twitter @ACSreactions to ...
Quantum computing will allow for the creation of powerful computers, but also much smarter and more creative robots than conventional ones. This was the conclusion arrived at by researchers from Spain and Austria, who have confirmed that quantum tools help robots learn and respond much faster to the stimuli around them.
Quantum mechanics has revolutionised the world of communications and computers by introducing algorithms which are much quicker and more secure in transferring information. Now researchers from the Complutense University of Madrid (UCM) and the University ...
The way neurons are interconnected in the brain is very complicated. This holds especially true for the cells of the hippocampus. It is one of the oldest brain regions and its form resembles a see horse (hippocampus in Latin). The hippocampus enables us to navigate space securely and to form personal memories. So far, the anatomic knowledge of the networks inside the hippocampus and its connection to the rest of the brain has left scientists guessing which information arrived where and when.
Signals spread through the brain
Accordingly, Dr Martin Pyka and his colleagues ...
New research by scientists at the University of Bristol has challenged one of the key axioms in biology - that enzymes need water to function. The breakthrough could eventually lead to the development of new industrial catalysts for processing biodiesel.
Enzymes are large biological molecules that catalyse thousands of different chemical reactions that are essential for all life, from converting food into energy, to controlling how our cells replicate DNA.
Throughout this diverse range of biological environments in which enzymes perform their various roles, the only ...
Plants that come under attack from pathogens have an automatic immune response. Fungi get around this plant immunity by injecting proteins into the host plant cells. These 'effector proteins' enable the fungi to escape the plant's immune system and allow the fungal cells to enter the plant unrecognised.
Exeter scientists have now shown that signalling organelles, known as 'early endosomes' act as long distance messengers in the fungi. They travel rapidly along long tube-like cells between the plant-invading fungal cell tip and the fungal cell nucleus. This rapid communication ...
PITTSBURGH—One way to combat the rising level of errors and fraud in life sciences research is through massive online laboratories, which use videogames to engage large numbers of non-professional investigators and prevent scientists from manually testing their own hypotheses, researchers from Carnegie Mellon University and Stanford University say.
Though unconventional, CMU's Adrien Treuille and Stanford's Rhiju Das argue that this online, game-like approach actually is more scientifically rigorous than the standard practice of scientists proposing an explanation for ...
This news release is available in Spanish. [Gondar, Ethiopia and Geneva, Switzerland – October 6, 2014] - The international research & development (R&D) consortium, AfriCoLeish, formed by six research organizations from East Africa and Europe, has launched a Phase III clinical study to address the extreme difficulty in treating visceral leishmaniasis (VL) in patients who also are HIV-positive. The study will assess the efficacy and the safety of two treatments: a combination treatment of AmBisome® and miltefosine, and AmBisome® alone. This is the first randomized clinical ...