(Press-News.org) By cooling Rubidium atoms deeply and concentrating a sufficient number of them in a compact space, they suddenly become indistinguishable. They behave like a single huge "super particle." Physicists call this a Bose-Einstein condensate.
For "light particles," or photons, this should also work. Unfortunately, this idea faces a fundamental problem. When photons are "cooled down," they disappear. Until a few months ago, it seemed impossible to cool light while concentrating it at the same time. The Bonn physicists Jan Klärs, Julian Schmitt, Dr. Frank Vewinger, and Professor Dr. Martin Weitz have, however, succeeded in doing this – a minor sensation.
How warm is light?
When the tungsten filament of a light bulb is heated, it starts glowing – first red, then yellow, and finally bluish. Thus, each color of the light can be assigned a "formation temperature." Blue light is warmer than red light, but tungsten glows differently than iron, for example. This is why physicists calibrate color temperature based on a theoretical model object, a so-called black body. If this body were heated to a temperature of 5,500 centigrade, it would have about the same color as sunlight at noon. In other words: noon light has a temperature of 5,500 degrees Celsius or not quite 5,800 Kelvin (the Kelvin scale does not know any negative values; instead, it starts at absolute zero or -273 centigrade; consequently, Kelvin values are always 273 degrees higher than the corresponding Celsius values).
When a black body is cooled down, it will at some point radiate no longer in the visible range; instead, it will only give off invisible infrared photons. At the same time, its radiation intensity will decrease. The number of photons becomes smaller as the temperature falls. This is what makes it so difficult to get the quantity of cool photons that is required for Bose-Einstein condensation to occur.
And yet, the Bonn researchers succeeded by using two highly reflective mirrors between which they kept bouncing a light beam back and forth. Between the reflective surfaces there were dissolved pigment molecules with which the photons collided periodically. In these collisions, the molecules 'swallowed' the photons and then 'spit' them out again. "During this process, the photons assumed the temperature of the fluid," explained Professor Weitz. "They cooled each other off to room temperature this way, and they did it without getting lost in the process."
A condensate made of light
The Bonn physicists then increased the quantity of photons between the mirrors by exciting the pigment solution using a laser. This allowed them to concentrate the cooled-off light particles so strongly that they condensed into a "super-photon."
This photonic Bose-Einstein condensate is a completely new source of light that has characteristics resembling lasers. But compared to lasers, they have a decisive advantage, "We are currently not capable of producing lasers that generate very short-wave light – i.e. in the UV or X-ray range," explained Jan Klärs. "With a photonic Bose-Einstein condensate this should, however, be possible."
This prospect should primarily please chip designers. They use laser light for etching logic circuits into their semiconductor materials. How fine these structures can be is limited by the wavelength of the light, among other factors. Long-wavelength lasers are less well suited to precision work than short-wavelength ones – it is as if you tried to sign a letter with a paintbrush.
X-ray radiation has a much shorter wavelength than visible light. In principle, X-ray lasers should thus allow applying much more complex circuits on the same silicon surface. This would allow creating a new generation of high-performance chips - and consequently, more powerful computers for end users. The process could also be useful in other applications such as spectroscopy or photovoltaics.
INFORMATION:
Contact:
Prof. Dr. Martin Weitz
Institut für Angewandte Physik der Universität Bonn
Ph: +49 228/73-4837 or -4836
Email: Martin.Weitz@uni-bonn.de
Jan Klärs
Institut für Angewandte Physik der Universität Bonn
Ph: +49 228/73-3453
Email: klaers@iap.uni-bonn.de
Bonn physicists create a 'super-photon'
Completely new source of light for many applications
2010-11-25
ELSE PRESS RELEASES FROM THIS DATE:
Erythromycin A produced in E. coli for first time
2010-11-25
MEDFORD/SOMERVILLE, Mass. -- Researchers at Tufts University School of Engineering have reported the first successful production of the antibiotic erythromycin A, and two variations, using E. coli as the production host.
The work, published in the November 24, 2010, issue of Chemistry and Biology, offers a more cost-effective way to make both erythromycin A and new drugs that will combat the growing incidence of antibiotic resistant pathogens. Equally important, the E. coli production platform offers numerous next-generation engineering opportunities for other natural ...
How pathogens hijack host plants
2010-11-25
Palo Alto, CA— Infestation by bacteria and other pathogens result in global crop losses of over $500 billion annually. A research team led by the Carnegie Institution's Department of Plant Biology developed a novel trick for identifying how pathogens hijack plant nutrients to take over the organism. They discovered a novel family of pores that transport sugar out of the plant. Bacteria and fungi hijack the pores to access the plant sugar for food. The first goal of any pathogen is to access the host's food supply to allow them to reproduce in large numbers. This is the ...
UCLA researchers discover drug resistance mechanisms in most common form of melanoma
2010-11-25
Researchers with UCLA's Jonsson Comprehensive Cancer Center have found that melanoma patients whose cancers are caused by mutation of the BRAF gene become resistant to a promising targeted treatment through another genetic mutation or the overexpression of a cell surface protein, both driving survival of the cancer and accounting for relapse.
The study, published Nov. 24, 2010, in the early online edition of the peer-reviewed journal Nature, could result in the development of new targeted therapies to fight resistance once the patient stops responding and the cancer ...
Researchers shine light on how some melanoma tumors evade drug treatment
2010-11-25
The past year has brought to light both the promise and the frustration of developing new drugs to treat melanoma, the most deadly form of skin cancer. Early clinical tests of a candidate drug aimed at a crucial cancer-causing gene revealed impressive results in patients whose cancers resisted all currently available treatments. Unfortunately, those effects proved short-lived, as the tumors invariably returned a few months later, able to withstand the same drug to which they first succumbed. Adding to the disappointment, the reasons behind these relapses were unclear.
Now, ...
An answer to a longstanding question: How HIV infection kills T cells
2010-11-25
Researchers appear to have an explanation for a longstanding question in HIV biology: how it is that the virus kills so many CD4 T cells, despite the fact that most of them appear to be "bystander" cells that are themselves not productively infected. That loss of CD4 T cells marks the progression from HIV infection to full-blown AIDS, explain the researchers who report their findings in studies of human tonsils and spleens in the November 24th issue of Cell, a Cell Press publication.
"In [infected] primary human tonsils and spleens, there is a profound depletion of CD4 ...
Danish researchers finally solve the obesity riddle
2010-11-25
Researchers at the Faculty of Life Sciences (LIFE), University of Copenhagen, can now unveil the results of the world's largest diet study:
If you want to lose weight, you should maintain a diet that is high in proteins with more lean meat, low-fat dairy products and beans and fewer finely refined starch calories such as white bread and white rice. With this diet, you can also eat until you are full without counting calories and without gaining weight. Finally, the extensive study concludes that the official dietary recommendations are not sufficient for preventing obesity. ...
Whale sharks do the math to avoid that sinking feeling
2010-11-25
They are the largest fish species in the ocean, but the majestic gliding motion of the whale shark is, scientists argue, an astonishing feat of mathematics and energy conservation. In new research published today in the British Ecological Society's journal Functional Ecology marine scientists reveal how these massive sharks use geometry to enhance their natural negative buoyancy and stay afloat.
For most animals movement is crucial for survival, both for finding food and for evading predators. However, movement costs substantial amounts of energy and while this is true ...
Fatal blood clot genetic risk breakthrough announcement
2010-11-25
An international team led by researchers from the Universities of Leicester and Cambridge has announced a breakthrough in identifying people at risk of developing potentially fatal blood clots that can lead to heart attack.
The discovery, published this week (25 November) in the leading haematology journal Blood, is expected to advance ways of detecting and treating coronary heart disease – the most common form of disease affecting the heart and an important cause of premature death.
The research led by Professor Alison Goodall from the University of Leicester and Professor ...
Growth-factor gel shows promise as hearing-loss treatment
2010-11-25
A new treatment has been developed for sudden sensorineural hearing loss (SSHL), a condition that causes deafness in 40,000 Americans each year, usually in early middle-age. Researchers writing in the open access journal BMC Medicine describe the positive results of a preliminary trial of insulin-like growth factor 1 (IGF1), applied as a topical gel.
Takayuki Nakagawa, from Kyoto University, Japan, worked with a team of researchers to test the gel in 25 patients whose SSHL had not responded to the normal treatment of systemic gluticosteroids. He said, "The results indicated ...
Each 5-degree temperature rise boosts kids' hospital admissions for serious injury by 10 percent
2010-11-25
Every 5°C rise in maximum temperature pushes up the rate of hospital admissions for serious injuries among children, reveals one of the largest studies of its kind published online in Emergency Medicine Journal.
Conversely, each 5° C drop in the minimum daily temperature boosts adult admissions for serious injury by more than 3%, while snow prompts an 8% rise, the research shows.
The authors base their findings on the patterns of hospital treatment for both adults and children in 21 emergency care units across England, belonging to the Trauma Audit and research Network ...
LAST 30 PRESS RELEASES:
Cesarean delivery linked to higher risk of pain and sleep problems after childbirth
New global burden of disease study: Mortality declines, youth deaths rise, widening health inequities
Chemobiological platform enables renewable conversion of sugars into core aromatic hydrocarbons of petroleum
Individualized perioperative blood pressure management in patients undergoing major abdominal surgery
Proactive vs reactive treatment of hypotension during surgery
Different types of depression linked to different cardiometabolic diseases
Ketogenic diet may protect against stress experienced in the womb
Adults 65 years and older not immune to the opioid epidemic, new study finds
Artificial intelligence emerging as powerful patient safety tool in pediatric anesthesia
Mother’s ZIP code, lack of access to prenatal care can negatively impact baby’s health at birth, new studies show
American Society of Anesthesiologists honors John M. Zerwas, M.D., FASA, with Distinguished Service Award
A centimeter-scale quadruped piezoelectric robot with high integration and strong robustness
Study confirms that people with ADHD can be more creative. The reason may be that they let their mind wander
Research gives insight into effect of neurodegenerative diseases on speech rhythm
Biochar and plants join forces to clean up polluted soils and boost ecosystem recovery
Salk scientist Joseph Ecker awarded McClintock Prize for Plant Genetics and Genome Studies
ADHD: Women are diagnosed five years later than men, despite symptoms appearing at the same age.
Power plants may emit more pollution during government shutdowns
Increasing pressures for conformity de-skilling and demotivating teachers, study warns
Researchers develop smarter menstrual product with potential for wearable health monitoring
Microwaves for energy-efficient chemical reactions
MXene current collectors could reduce size, improve recyclability of Li-ion batteries
Living near toxic sites linked to aggressive breast cancer
New discovery could open door to male birth control
Wirth elected Fellow of American Physical Society
The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: October 10, 2025
Destined to melt
Attitudes, not income, drive energy savings at home
The playbook for perfect polaritons
‘Disease in a dish’ study of progressive MS finds critical role for unusual type of brain cell
[Press-News.org] Bonn physicists create a 'super-photon'Completely new source of light for many applications