(Press-News.org) Nate Silver and Richard Feynman walk into a bar and bump into a biologist . . .
While this may sound like the setup to some late-night nerd sketch, researchers have taken this premise and applied it to an increasingly cumbersome problem in modern biology, namely, finding meaning in the rising oceans of genomic data.
In this specific instance, the data comprisesreams of cancer mutations that genome-wide studies are publishing at a dizzying rate. The challenge is finding new and efficient ways to parse the signal from the noise (and there is no shortage of noise).
As a new way to tackle this, a group of scientists have fused the power of statistical physics and artificial intelligence into a mathematical toolkit that can turn cancer-mutation data into multidimensional models that show how specific mutations alter the social networks of proteins in cells. From this they can deduce which mutations among the myriad mutations present in cancer cells might actually play a role in driving disease.
At the core of this new approach is an algorithm based on statistical mechanics, a branch of theoretical physics that describes large phenomena by predicting the macroscopic properties of its microscopic components.
"Here we have found that a fundamental concept in statistical mechanics, which many of us learned as undergraduates in theoretical physics courses and then largely forgot because it didn't apply to our everyday lives as biologists, can be relevant to one of the most difficult problems in cancer genetics," said Peter Sorger, the HMS Otto Krayer Professor of Systems Pharmacology and senior author on the paper.
These findings, which are among the first to be produced from the new Laboratory of Systems Pharmacology (LSP), are published November 2 online in Nature Genetics.
Dark Matter Matters
Many of the most widely studied cancer genes, such as P53 and Ras, were discovered after decades of work by many groups. But today, in the era of high throughput genomics, we have thousands of times more data from thousands of samples. As a result, the sheer volume of catalogued cancer mutations is vast. But not all mutations actually influence tumor behavior. Many appear to be along for the ride, so to speak, and are as a result called "passenger mutations." In order to separate the drivers from the passengers, researchers typically use a kind of "polling" strategy in which they identify the most common mutations, reasoning that those are the significant ones. Only the most promising candidates are then subjected to the detailed and painstaking analysis that has been applied to P53 and Ras.
Mohammed AlQuraishi, an independent HMS Systems Biology fellow associated with the LSP and Sorger lab and lead author of the paper, reasoned that biologists were in dire need of much more biophysically rigorous tools for scouring this data. With a background in genetics, statistics and physics, AlQuraishi realized that biologists can exploit the statistical power from live data sets and marry it to theoretical physics. "It's the way that Silver and Feynman together would do it," he joked.
Statistical mechanics is a precise physical description of how collections of individual molecules give rise to the macroscopic properties we perceive, such as temperature and pressure. AlQuraishi used its core principles as the basis for a platform that would analyze information housed in the Cancer Genome Atlas. As a result he was able to generate detailed schematics of how certain mutations altered the vast, complex cellular world of protein social networks—networks that largely determine a cell's health, or lack thereof. In doing so, he stumbled upon a few unexpected findings.
Again, many cancer mutations are common, and many more cancer mutations are rare—some so rare that they only occur in a handful of patients. AlQuraishi found that common and rare mutations are equally likely to affect the protein network.
"Both kinds of mutations are equally strong," he said. "In both cases, about one percent of the common and one percent of the rare mutations alter the tumor networks we studied. But rare mutations are being largely ignored. We need to start paying attention to them."
For every common mutation, there are approximately four rare ones, so, based on numbers, rare mutations might be much more significant than previously suspected. "That's where much of the action is, in the rare mutations. We've long considered this large universe of rare mutations to be dark matter, but here we have just found that all this dark matter actually matters."
Reproducing Results
The researchers also found that mutations are not really the blunt force that they expected. Rather than knocking out an entire branch of a network, e.g., a neighborhood power outage, or inserting an entirely new character, i.e., a protein, mutations cause a subtle, almost surgically precise, altering of the communication pathway.
"From the perspective of the mutation, it is hard to be so precise," said AlQuraishi. "But cancer can't be too disruptive, or else it might die. It needs to fly under the radar. This subtle altering of networks achieves that objective. Drug companies can exploit this and possibly develop more targeted therapies."
A final area that these findings address is the problem of reproducing published results in the scientific literature. Here, however, the researchers are able to use fundamental physical principles to process datasets from different laboratories (including their own) in a way that removes the false positives and enriches for the true positives. The model is therefore more accurate and reproducible than any single data set.
"We can clean up the experiments by only using data that both the model and experiments agree on," said AlQuraishi.
"In general, much of the problem with irreproducibility in science is a problem of poor statistics," said Sorger. "We addressed that directly here."
INFORMATION:
This work was supported by the National Institutes of Health grants GM68762, GM107618 and GM072872.
Written by David Cameron
Harvard Medical School hms.harvard.edu has more than 9,000 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 16 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Boston Children's Hospital, Brigham and Women's Hospital, Cambridge Health Alliance, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Hebrew SeniorLife, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital and VA Boston Healthcare System.
Mutant models
Physics, statistics and genetics come together to reveal cancer's strategies
2014-11-02
ELSE PRESS RELEASES FROM THIS DATE:
Ultracold disappearing act
2014-11-02
A disappearing act was the last thing Rice University physicist Randy Hulet expected to see in his ultracold atomic experiments, but that is what he and his students produced by colliding pairs of Bose Einstein condensates (BECs) that were prepared in special states called solitons.
Hulet's team documented the strange phenomenon in a new study published online this week in the journal Nature Physics.
BECs are clumps of a few hundred thousand lithium atoms that are cooled to within one-millionth of a degree above absolute zero, a temperature so cold that the atoms march ...
New technique efficiently turns antibodies into highly tuned 'nanobodies'
2014-11-02
Antibodies, in charge of recognizing and homing in on molecular targets, are among the most useful tools in biology and medicine. Nanobodies – antibodies' tiny cousins – can do the same tasks, for example marking molecules for research or flagging diseased cells for destruction. But, thanks to their comparative simplicity nanobodies offer the tantalizing prospect of being much easier to produce.
Unfortunately, their promise hasn't been fully realized, because scientists have lacked an efficient way of identifying the nanobodies most closely tuned to their ...
'Invisible tattoos' could improve body confidence after breast cancer radiotherapy
2014-11-02
Invisible tattoos could replace the permanent dark ink tattoos used to ensure that breast cancer patients having radiotherapy are treated in exactly the same spot during each session, according to results from a pilot study to be presented at the National Cancer Research Institute (NCRI) Cancer Conference today (Sunday)*.
Research suggests that the permanent pin prick marks made on the skin of women having radiotherapy reminds them of their diagnosis for years to come, reducing body confidence and self-esteem.
It's also more difficult to spot these tattoos in dark-skinned ...
Step towards blood test for many cancer types
2014-11-02
Scientists have identified more than 800 markers in the blood of cancer patients that could help lead to a single blood test for early detection of many types of cancer in future, according to research presented at the National Cancer Research Institute (NCRI) Cancer Conference in Liverpool today (Sunday).
This is the first time that cancer-specific blood markers have been comprehensively reviewed and identified for further clinical development. This study, by the UK Early Cancer Detection Consortium*, funded by Cancer Research UK, has analysed 19,000 scientific papers ...
JNS: Pediatrics publishes guidelines for the treatment of pediatric hydrocephalus
2014-11-01
Charlottesville, VA (November 1, 2014). The Journal of Neurosurgery Publishing Group is pleased to announce today's publication of "Pediatric hydrocephalus: systematic literature review and evidence-based guidelines," a supplement to the November issue of the Journal of Neurosurgery: Pediatrics. Authored by a volunteer task force from the pediatric neurosurgery community, the supplement offers a thorough evaluation of the current treatments for pediatric hydrocephalus as well as up-to-date evidence-based recommendations for their use.
Hydrocephalus is a condition in which ...
More penalties on the way for hospitals that treat the poor? New U-M study suggests so
2014-11-01
ANN ARBOR, Mich. – Last week, the federal government revealed that it will fine more than 2,600 hospitals in the coming year, because too many Medicare patients treated at these hospitals are ending up back in the hospital within 30 days of going home. Two new conditions have been added in this round of penalties: elective hip and knee replacement and chronic lung disease.
Now, a new University of Michigan analysis shows that penalties for chronic lung disease will have a greater impact on hospitals that care for poor and minority patients. The findings are published ...
Cancer cell fingerprints in the blood may speed up childhood cancer diagnosis
2014-11-01
Newly-identified cancer cell fingerprints in the blood could one day help doctors diagnose a range of children's cancers faster and more accurately, according to research* presented at the National Cancer Research Institute (NCRI) Cancer Conference next week.
The researchers, from the University of Cambridge and Addenbrooke's Hospital in Cambridge, found unique molecular fingerprints for 11 types of children's tumours,** which could be used to develop blood tests to diagnose these cancers.
This may eventually lead to a quicker, more accurate way to diagnose tumours, ...
Study of Chile earthquake finds new rock structure that affects earthquake rupture
2014-11-01
Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.
The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth's crust. The body was revealed using 3-D seismic images of Earth's interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to ...
Breaking down DNA by genome
2014-10-31
New DNA sequencing technologies have greatly advanced genomic and metagenomic studies in plant biology. Scientists can readily obtain extensive genetic information for any plant species of interest, at a relatively low cost, rapidly accelerating the pace of genome sequencing.
However, since plant tissues harbor three separate genomes (nuclear, chloroplast, and mitochondrial), it can often be challenging to isolate the particular genome of interest from extracted DNA samples. Sequencing DNA containing all three genomes therefore results in a considerable amount of wasted ...
Goodbye to rainy days for US, Japan's first rain radar in space
2014-10-31
After 17 years of groundbreaking 3-D images of rain and storms, the joint NASA and Japan Aerospace Exploration Agency Tropical Rainfall Measuring Mission (TRMM) will come to an end next year. NASA predicts that science operations will cease in or about April 2015, based on the most recent analysis by mission operations at NASA's Goddard Space Flight Center, Greenbelt, Maryland.
On July 8, 2014, pressure readings from the fuel tank indicated that TRMM was near the end of its fuel supply. As a result, NASA ceased station-keeping maneuvers that would keep the satellite at ...
LAST 30 PRESS RELEASES:
New register opens to crown Champion Trees across the U.S.
A unified approach to health data exchange
New superconductor with hallmark of unconventional superconductivity discovered
Global HIV study finds that cardiovascular risk models underestimate for key populations
New study offers insights into how populations conform or go against the crowd
Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials
WashU researchers map individual brain dynamics
Technology for oxidizing atmospheric methane won’t help the climate
US Department of Energy announces Early Career Research Program for FY 2025
PECASE winners: 3 UVA engineering professors receive presidential early career awards
‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions
MSU researcher’s breakthrough model sheds light on solar storms and space weather
Nebraska psychology professor recognized with Presidential Early Career Award
New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration
Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins
From lab to field: CABBI pipeline delivers oil-rich sorghum
Stem cell therapy jumpstarts brain recovery after stroke
Polymer editing can upcycle waste into higher-performance plastics
Research on past hurricanes aims to reduce future risk
UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology
Panorama of our nearest galactic neighbor unveils hundreds of millions of stars
A chain reaction: HIV vaccines can lead to antibodies against antibodies
Bacteria in polymers form cables that grow into living gels
Rotavirus protein NSP4 manipulates gastrointestinal disease severity
‘Ding-dong:’ A study finds specific neurons with an immune doorbell
A major advance in biology combines DNA and RNA and could revolutionize cancer treatments
Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor
NIH to lead implementation of National Plan to End Parkinson’s Act
Growth of private equity and hospital consolidation in primary care and price implications
Online advertising of compounded glucagon-like peptide-1 receptor agonists
[Press-News.org] Mutant modelsPhysics, statistics and genetics come together to reveal cancer's strategies