(Press-News.org) Washington, D.C.-Two new papers from members of the MESSENGER Science Team provide global-scale maps of Mercury's surface chemistry that reveal previously unrecognized geochemical terranes -- large regions that have compositions distinct from their surroundings. The presence of these large terranes has important implications for the history of the planet.
The MESSENGER mission was designed to answer several key scientific questions, including the nature of Mercury's geological history. Remote sensing of the surface's chemical composition has a strong bearing on this and other questions. Since MESSENGER was inserted into orbit about Mercury in March 2011, data from the spacecraft's X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) have provided information on the concentrations of potassium, thorium, uranium, sodium, chlorine, and silicon, as well as ratios relative to silicon of magnesium, aluminum, sulfur, calcium, and iron.
Until now, however, geochemical maps for some of these elements and ratios have been limited to one hemisphere and have had poor spatial resolution. In "Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER's X-Ray Spectrometer," published this week in Earth and Planetary Science Letters, the authors used a novel methodology to produce global maps of the magnesium/silicon and aluminum/silicon abundance ratios across Mercury's surface from data acquired by MESSENGER's XRS.
These are the first global geochemical maps of Mercury, and the first maps of global extent for any planetary body acquired via the technique of X-ray fluorescence, by which X-rays emitted from the Sun's atmosphere allow the planet's surface composition to be examined. The global magnesium and aluminum maps were paired with less spatially complete maps of sulfur/silicon, calcium/silicon, and iron/silicon, as well as other MESSENGER datasets, to study the geochemical characteristics of Mercury's surface and to investigate the evolution of the planet's thin silicate shell.
The most obvious of Mercury's geochemical terranes is a large feature, spanning more than 5 million square kilometers. This terrane "exhibits the highest observed magnesium/silicon, sulfur/silicon, and calcium/silicon ratios, as well as some of the lowest aluminum/silicon ratios on the planet's surface," writes Shoshana Weider, a planetary geologist and Visiting Scientist at the Carnegie Institution. Weider and colleagues suggest that this "high-magnesium region" could be the site of an ancient impact basin. By this interpretation, the distinctive chemical signature of the region reflects a substantial contribution from mantle material that was exposed during a large impact event.
A second paper, "Geochemical terranes of Mercury's northern hemisphere as revealed by MESSENGER neutron measurements," now available online in Icarus, presents the first maps of the absorption of low-energy ("thermal") neutrons across Mercury's surface. The data used in this second study were obtained with the GRS anti-coincidence shield, which is sensitive to neutron emissions from the surface of Mercury.
"From these maps we may infer the distribution of thermal-neutron-absorbing elements across the planet, including iron, chlorine, and sodium," writes lead author Patrick Peplowski of The Johns Hopkins University Applied Physics Laboratory. "This information has been combined with other MESSENGER geochemical measurements, including the new XRS measurements, to identify and map four distinct geochemical terranes on Mercury."
According to Peplowski, the results indicate that the smooth plains interior to the Caloris basin, Mercury's largest well-preserved impact basin, have an elemental composition that is distinct from other volcanic plains units, suggesting that the parental magmas were partial melts from a chemically distinct portion of Mercury's mantle. Mercury's high-magnesium region, first recognized from the XRS measurements, also contains high concentrations of unidentified neutron-absorbing elements.
"Earlier MESSENGER data have shown that Mercury's surface was pervasively shaped by volcanic activity," notes Peplowski. "The magmas erupted long ago were derived from the partial melting of Mercury's mantle. The differences in composition that we are observing among geochemical terranes indicate that Mercury has a chemically heterogeneous mantle."
"The consistency of the new XRS and GRS maps provides a new dimension to our view of Mercury's surface," Weider adds. "The terranes we observe had not previously been identified on the basis of spectral reflectance or geological mapping."
"The crust we see on Mercury was largely formed more than three billion years ago," says Carnegie's Larry Nittler, Deputy Principal Investigator of the mission and co-author of both studies. "The remarkable chemical variability revealed by MESSENGER observations will provide critical constraints on future efforts to model and understand Mercury's bulk composition and the ancient geological processes that shaped the planet's mantle and crust."
INFORMATION:
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. The MESSENGER spacecraft was launched on August 3, 2004, and entered orbit about Mercury on March 18, 2011 (UTC), to begin its primary mission - a yearlong study of its target planet. MESSENGER's first extended mission began on March 18, 2012, and ended one year later. MESSENGER is now in a second extended mission, which is scheduled to conclude this spring. Sean C. Solomon, the Director of Columbia University's Lamont-Doherty Earth Observatory, leads the mission as Principal Investigator. The Johns Hopkins University Applied Physics Laboratory built and operates the MESSENGER spacecraft and manages this Discovery-class mission for NASA.
Among the facts so widely assumed that they are rarely, if ever studied, is the notion that wider hips make women less efficient when they walk and run.
For decades, this assumed relationship has been used to explain why women don't have wider hips, which would make childbirth easier and less dangerous. The argument, known as the "obstetrical dilemma," suggests that for millions of years female humans and their bipedal ancestors have faced an evolutionary trade-off in which selection for wider hips for childbirth has been countered by selection for narrower hips for ...
WASHINGTON - A legal scholar and tobacco control expert says he has developed a research-based roadmap that allows for the immediate regulation of e-cigarettes.
Writing in the March issue of Food and Drug Law Journal, Eric N. Lindblom, JD, senior scholar at the O'Neill Institute for National and Global Health Law, says his proposal would minimize the threats e-cigarettes pose to public health while still enabling them potentially help reduce smoking.
"This approach could help to heal the current split in the public health community over e-cigarettes by addressing ...
New research led by University of York scientists highlights how poor connectivity of protected area (PA) networks in Southeast Asia may prevent lowland species from responding to climate change.
Tropical species are shifting to higher elevations in response to rising temperatures, but there has been only limited research into the effectiveness of current protected area networks in facilitating such movements in the face of climate change.
However, the new study, published in the journal Biological Conservation, focuses on the connectivity of the protected area network ...
The font type of written text and how easy it is to read can be influential when it comes to engaging people with important health information and recruiting them for potentially beneficial programmes, new research by The University of Manchester and Leeds Beckett University has found.
Led by Dr Andrew Manley, a Chartered Sport and Exercise Psychologist and Senior Lecturer in Sport and Exercise Psychology at Leeds Beckett, the study - published in the latest issue of Patient Education and Counseling journal - assessed the extent to which the title and font of participant ...
With the socio-economic developments of the last decades, new emerging compounds have been produced, released and discharged through different point and diffuse sources in European rivers, lakes, and marine-coastal and transitional waters. Treated municipal wastewaters contain a multitude of organic chemicals including pharmaceuticals, hormones, and personal care products, which are continuously introduced into aquatic ecosystems. Their possible effects on the environment and human health is often unknown. The exposure of organisms, communities and humans to mixtures of ...
Although listening to music is common in all societies, the biological determinants of listening to music are largely unknown. According to a latest study, listening to classical music enhanced the activity of genes involved in dopamine secretion and transport, synaptic neurotransmission, learning and memory, and down-regulated the genes mediating neurodegeneration. Several of the up-regulated genes were known to be responsible for song learning and singing in songbirds, suggesting a common evolutionary background of sound perception across species.
Listening to music ...
Atomic force microscopy (AFM) is a leading tool for imaging, measuring, and manipulating materials with atomic resolution - on the order of fractions of a nanometer.
AFM images surface topography of a structure by "touching" and "feeling" its surface by scanning an extremely fine needle (the diameter of the tip is about 5 nanometers, about 1/100 of light wavelength or 1/10,000 of a hair) on the surface.
This technique has been applied to image solid materials with nanometer resolution, but it has been difficult to apply AFM for a soft and large sample like eukaryotic ...
Metastatic melanoma is the leading cause of skin cancer deaths in the United States; once melanoma has spread (metastasized), life expectancy for patients can be dramatically shortened. At present, the reference therapy for patients diagnosed with metastatic melanoma is Dacarbazine (DTIC), which is associated with poor patient outcomes.
In a study published in Molecular Cancer Research, March 12, 2015, the laboratory of Mary J.C. Hendrix, PhD, in collaboration with other scientists found that standard treatments for metastatic melanoma are not effective against a growth ...
An FDA-approved drug for high blood pressure, guanabenz, prevents myelin loss and alleviates clinical symptoms of multiple sclerosis (MS) in animal models, according to a new study. The drug appears to enhance an innate cellular mechanism that protects myelin-producing cells against inflammatory stress. These findings point to promising avenues for the development of new therapeutics against MS, report scientists from the University of Chicago in Nature Communications on Mar. 13.
"Guanabenz appears to enhance the cell's own protective machinery to diminish the loss of ...
Almost all patients with a group of blood cancers called B-cell malignancies have two prominent "fingerprints" on the surface of leukemia and lymphoma cancers, called CD22 and CD19, Vallera explained. To develop the drug, Vallera and colleagues chose two antibody fragments that each selectively bind to CD19 and CD22. They used genetic engineering to attach these two antibodies to a potent toxin, the bacterial diphtheria toxin. When the antibody fragments bind to the two targets on the cancer cell, the entire drug enters the cell, and the toxin kills the cell.
Vallera; ...