(Press-News.org) Planet Earth may contain millions fewer species than previously thought and estimates are converging, according to research led by Griffith University (Queensland, Australia).
In a paper published by the US-based journal Proceedings of the National Academy of Sciences (PNAS), Professor Nigel Stork of Griffith's Environmental Futures Research Institute reveals findings that narrow global species estimates for beetles, insects and terrestrial arthropods.
The research features an entirely new method of species calculation derived from samples of beetles from the comprehensive collection at London's Natural History Museum.
"It has been said we don't know to the nearest order of magnitude just how many species with which we share the planet. Some say it could be as low as two million; others suggest up to 100 million," says Professor Stork.
"By narrowing down how many species exist within the largest group - the insects and other arthropods -- we are now in a position to try to improve estimates for all species, including plants, fungi and vertebrates.
"Understanding how many species there are and how many there might have been is critical to understanding how much humans have impacted biodiversity and whether we are at the start of, or even in the middle of, an extinction crisis."
About 25 per cent of all species that have been described are beetles. However, when combined with other insects the figure climbs to more than half of all described and named species on Earth.
For this reason, Professor Stork and his colleagues focused on asking how many species of beetles and insects there actually are, in the process applying a new method of estimation arising from a tendency for larger species of British beetles to be described before smaller species.
"Because of the global spread of major beetle lineages, we made the assumption that the size distribution of the very well known British beetles might be similar to that of beetles worldwide," says Professor Stork.
"So, if we could get a measurement of the body sizes of the beetles from around the world, we might be able to plot where these fitted in time against the British beetles."
After measuring a sample from the Natural History Museum's worldwide collection of beetles, Professor Stork compared the mean body size with the changing body sizes of British beetles to reveal that roughly 10 per cent of the world's beetles have been named and described.
This figure sheds intriguing light on previous estimates of global species richness.
In the 1980s, there were just two methods of estimating species. In the case of beetles, these gave a mean of 17.5 million species and a range of 4.9-40.7 million. For all terrestrial arthropods, the mean was 36.8 million and a range of 7-80 million.
However, the new research shows that four current methods of estimation - dating from 2001 onwards -- suggest much lower figures, namely a mean of 1.5 million for beetles (range 0.9-2.1 million) and 6.8 million for terrestrial arthropods (range 5.9-7.8 million).
"While all methods of estimating global species richness make assumptions, what is important here is that four largely unrelated methods, including the new body size method, produce similar estimates," says Professor Stork.
"With estimates converging in this way, this suggests we are closer to finding the real numbers than before.
"It also means we can improve regional species richness. For Australian fauna and flora, for example, we should be able to make better estimates of just how many species there are and which groups need more taxonomic attention."
Professor Ian Owens, Director of Science at the Natural History Museum, says this research is a great example of how natural history collections support high-impact scientific research that addresses challenging questions such as the diversity of life.
"The Natural History Museum's beetle collection is one of the most important and extensive in the world, so I'm delighted that it has played such a fundamental part in this study that uses a novel approach to estimating how many species of beetle exist," says Professor Owens.
"The results are very exciting and are a big step forward to establishing a baseline for biodiversity."
Meanwhile, co-author of the PNAS paper -- the University of Melbourne's Associate Professor Andrew Hamilton - says efforts to come up with new or modified ways of resolving how many species exist are beginning to prove fruitful.
Professor Stork says the research has important conservation ramifications.
"Success in planning for conservation and adopting remedial management actions can only be achieved if we know what species there are, how many need protection and where," he says. "Otherwise, we have no baseline against which to measure our successes.
"Furthermore, it is arguably not only the final number of species that is important, but what we discover about biodiversity in the process.
"The degree to which we can or cannot accurately estimate the number of species or the scale of organismal diversity on Earth is a measure of our ignorance in understanding the ecological and evolutionary forces that create and maintain the biodiversity on our planet.
"Attacking this question also drives scientific enquiry and is of public interest. Society expects science to know what species exist on Earth, as it expects science to discover nuclear particles and molecules.
"These discoveries open doors to more utilitarian interests."
INFORMATION:
June 1, 2015 CHAPEL HILL, NC - In the beginning, there were simple chemicals. And they produced amino acids that eventually became the proteins necessary to create single cells. And the single cells became plants and animals. Recent research is revealing how the primordial soup created the amino acid building blocks, and there is widespread scientific consensus on the evolution from the first cell into plants and animals. But it's still a mystery how the building blocks were first assembled into the proteins that formed the machinery of all cells. Now, two long-time University ...
Today's computer chips pack billions of tiny transistors onto a plate of silicon within the width of a fingernail. Each transistor, just tens of nanometers wide, acts as a switch that, in concert with others, carries out a computer's computations. As dense forests of transistors signal back and forth, they give off heat -- which can fry the electronics, if a chip gets too hot.
Manufacturers commonly apply a classical diffusion theory to gauge a transistor's temperature rise in a computer chip. But now an experiment by MIT engineers suggests that this common theory doesn't ...
Bacteria and viruses have an obvious role in causing infectious diseases, but microbes have also been identified as the surprising cause of other illnesses, including cervical cancer (Human papilloma virus) and stomach ulcers (H. pylori bacteria).
A new study by University of Iowa microbiologists now suggests that bacteria may even be a cause of one of the most prevalent diseases of our time - Type 2 diabetes.
The research team led by Patrick Schlievert, PhD, professor and DEO of microbiology at the UI Carver College of Medicine, found that prolonged exposure to a toxin ...
As the world's population of older adults increases, so do conversations around successful aging -- including seniors' physical, mental and social well-being.
A variety of factors can impact aging adults' quality of life. Two big ones, according to new research from the University of Arizona, are the health and cognitive functioning of a person's spouse.
Analyzing data from more than 8,000 married couples -- with an average age in the early 60s -- researchers found that the physical health and cognitive functioning of a person's spouse can significantly affect a person's ...
A team of scientists at Virginia Commonwealth University has synthesized a powerful new magnetic material that could reduce the dependence of the United States and other nations on rare earth elements produced by China.
"The discovery opens the pathway to systematically improving the new material to outperform the current permanent magnets," said Shiv Khanna, Ph.D., a commonwealth professor in the Department of Physics in the College of Humanities and Sciences.
The new material consists of nanoparticles containing iron, cobalt and carbon atoms with a magnetic domain ...
COLLEGE PARK, Md. -- The introduction of Craigslist led to an increase in HIV-infection cases of 13.5 percent in Florida over a four-year period, according to a new study conducted at the University of Maryland's Robert H. Smith School of Business. The estimated medical costs for those patients will amount to $710 million over the course of their lives.
Online hookup sites have made it easier for people to have casual sex -- and also easier to transmit sexually transmitted diseases. The new study measured the magnitude of the effect of one platform on HIV infection rates ...
Selling one's body to provide another person with sexual pleasure and selling organs to restore another person's health are generally prohibited in North America on moral grounds, but two new University of Toronto Mississauga studies illustrate how additional information about the societal benefits of such transactions can have an impact on public approval.
The research, conducted by Professor Nicola Lacetera of the University of Toronto (Institute for Management and Innovation, U of T Mississauga, with a cross-appointment to the Rotman School of Management) and his ...
Going into space might wreak havoc on our bodies, but a new set of microgravity experiments may help shed light on new approaches for treating cartilage diseases on Earth. In a new research report published in the June 2015 issue of The FASEB Journal, a team of European scientists suggests that our cartilage--tissue that serves as a cushion between bones--might be able to survive microgravity relatively unscathed. Specifically, when in a microgravity environment, chondrocytes (a main component of cartilage) were more stable and showed only moderate alterations in shape ...
There's an urgent demand for new antimicrobial compounds that are effective against constantly emerging drug-resistant bacteria. Two robotic chemical-synthesizing machines, named Symphony X and Overture, have joined the search. Their specialty is creating custom nanoscale structures that mimic nature's proven designs. They're also fast, able to assemble dozens of compounds at a time.
The machines are located in a laboratory on the fifth floor of the Molecular Foundry, a DOE Office of Science User Facility at Berkeley Lab. They make peptoids, which are synthetic versions ...
GAINESVILLE, Fla. -- If a picture is worth a thousand words, UF Health Type 1 diabetes researchers and their colleagues have tapped into an encyclopedia, revealing new insights into how young people cope with the disease.
The sophisticated scientific instrument? A camera.
More than 13,000 children and teens are diagnosed with Type 1 diabetes each year. To find out more about their experiences as they live with this chronic disorder, a group of diabetes researchers from three universities, including the University of Florida, gave 40 adolescents disposable cameras and ...