PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

The map of nuclear deformation takes the form of a mountain landscape

The map of nuclear deformation takes the form of a mountain landscape
2021-01-02
(Press-News.org) Kraków, 30 December 2020

The map of nuclear deformation takes the form of a mountain landscape

Until recently, scientists believed that only very massive nuclei could have excited zero-spin states of increased stability with a significantly deformed shape. Meanwhile, an international team of researchers from Romania, France, Italy, the USA and Poland showed in their latest article that such states also exist in much lighter nickel nuclei. Positive verification of the theoretical model used in these experiments allows describing the properties of nuclei unavailable in Earth laboratories.

More than 99.9 per cent of the mass of an atom comes from the atomic nucleus, the volume of which is over a trillion times smaller than the volume of the entire atom. Hence, the atomic nucleus has an amazing density of about 150 million tons per cubic centimetre. This means that one tablespoon of nuclear matter weighs almost as much as a cubic kilometre of water. Despite their very small size and incredible density, atomic nuclei are complex structures made of protons and neutrons. One may expect that such extremely dense objects would always take spherical form. In reality, however, the situation is quite different: most nuclei are deformed - they exhibit shape flattened or elongated along one or even two axes, simultaneously. To find the favourite form of a given nucleus, it is customary to construct a landscape of the potential energy as a function of deformation. One may visualize such landscape by drawing a map on which the plane coordinates are the deformation parameters, i.e. degrees of elongation or flattening along the two axes, while the colour indicates the amount of energy needed to bring the nucleus to a given shape. Such a map is a full analogy to a geographical map of mountain terrain.

If a nucleus is formed in the nuclear reaction, it appears at a given point of the landscape - it takes specific deformation. It then starts to slide (change deformation) towards the lowest energy point (stable deformation). In some cases, however, before reaching the ground state, it may be stopped for a while in some local minimum, a trap, which corresponds to metastable deformation. This is very similar to water that springs in a particular location in the mountain area and flows downward. Before it reaches the lowest valley, it may be trapped in local depressions for some time. If a stream connects the local depression to the lowest point of the landscape, water will flow down. If the depression is well isolated, the water will stay there for a very long time.

Experiments have shown that local minima in the nuclear deformation landscape at spin zero exist only in massive nuclei with atomic numbers larger than 89 (actinium) and a total number of protons and neutrons well above 200. Such nuclei can be trapped in these secondary minima at metastable deformation for a period even tens of millions of times longer than the time needed to reach the ground state without being slowed down by the trap. Until a few years ago, an excited zero-spin state associated with metastable deformation had never been observed among nuclei of lighter elements. The situation changed a few years ago when a state with sizeable deformation characterized by increased stability was found in nickel-66, the nucleus with 28 protons and 38 neutrons. This identification was stimulated by calculations performed with the sophisticated Monte Carlo shell model developed by Tokyo University theorists, which predicted this deformation trap.

"The calculations performed by our Japanese colleagues also provided another unexpected result," says Prof. Bogdan Fornal (IFJ PAN). "They showed that a deep, local depression (trap) associated with sizeable deformation should be present also in the potential energy landscape of nickel-64, the nucleus with two neutrons less than nickel-66, which until now was considered to have only one main minimum with a spherical shape. The problem was that in nickel-64 the depression was predicted at high excitation energy - at high altitude in the mountain terrain analogy - and it was extremely difficult to find an experimental method to place the nucleus in this trap."

A tour de force took place involving four complementary experiments, jointly conducted by a collaboration lead by experimentalists from Romania (IFIN-HH in Bucharest), France (Institut Laue-Langevin, Grenoble), Italy (University of Milan), USA (the University of North Carolina and TUNL) and Poland (IFJ PAN, Krakow). Measurements were performed at four different laboratories in Europe and the USA: Institut Laue-Langevin (Grenoble, France), IFIN-HH Tandem Laboratory (Romania), Argonne National Laboratory (Chicago, USA) and the Triangle Universities Nuclear Laboratory (TUNL, North Carolina, USA). Different reaction mechanisms were employed including proton and neutron transfer, thermal-neutron capture, Coulomb excitation and nuclear-resonance fluorescence, in combination with state-of-the-art gamma-ray detection techniques.

All the data taken together allowed to establish the existence of two secondary minima in the potential energy landscape of nickel-64, corresponding to oblate (flattened) and prolate (elongated) ellipsoidal shapes, with the prolate one being deep and well isolated as indicated by the significantly retarded transition to the main spherical minimum.

"The extension of time which the nucleus spends when trapped in the prolate minimum of the Ni-64 nucleus is not as spectacular as that of the heavy nuclei, where it reaches tens of millions of times. We recorded the increase of only a few tens of times; yet the fact that this increase is close to the one provided by the new theoretical model, is a great achievement," states Prof. Fornal.

A particularly valuable outcome of the study is identifying a previously unconsidered component of the force acting between nucleons in complex nuclear systems, the so-called tensor monopole, which is responsible for the multifaceted landscape of deformation in the nickel isotopes. Scientists expect that this interaction is accountable to a large extent for shaping the structure of many nuclei that have not yet been discovered.

In a broader perspective, the presented investigation indicates that the theoretical approach applied here, being able to adequately predict the unique characteristics of the nickel nuclei, has great potential in describing the properties of hundreds of nuclear systems which are not accessible in the laboratory on the Earth today, but continually produced in stars.

INFORMATION:

The Henryk Niewodniczanski Institute of Nuclear Physics (IFJ PAN) is currently the largest research institute of the Polish Academy of Sciences. The broad range of studies and activities of IFJ PAN includes basic and applied research, ranging from particle physics and astrophysics, through hadron physics, high-, medium-, and low-energy nuclear physics, condensed matter physics (including materials engineering), to various applications of methods of nuclear physics in interdisciplinary research, covering medical physics, dosimetry, radiation and environmental biology, environmental protection, and other related disciplines. The average yearly yield of the IFJ PAN encompasses more than 600 scientific papers in the Journal Citation Reports published by the Clarivate Analytics. The part of the Institute is the Cyclotron Centre Bronowice (CCB) which is an infrastructure, unique in Central Europe, to serve as a clinical and research centre in the area of medical and nuclear physics. IFJ PAN is a member of the Marian Smoluchowski Kraków Research Consortium: "Matter-Energy-Future" which possesses the status of a Leading National Research Centre (KNOW) in physics for the years 2012-2017. In 2017 the European Commission granted to the Institute the HR Excellence in Research award. The Institute is of A+ Category (leading level in Poland) in the field of sciences and engineering.

CONTACTS:

Prof. Bogdan Fornal
Institute of Nuclear Physics of Polish Academy of Sciences
Tel: +48 12 662 8200
Email: bogdan.fornal@ifj.edu.pl

SCIENTIFIC PAPERS:

1.
N. Marginean, D. Little, Y. Tsunoda, S. Leoni, R. V. F. Janssens, B. Fornal, T. Otsuka, C. Michelagnoli, L. Stan, F. C. L. Crespi, C. Costache, R. Lica, M. Sferrazza, A. Turturica, A. D. Ayangeakaa, K. Auranen, M. Barani, P. C. Bender, S. Bottoni, M. Boromiza, A. Bracco, S. Calinescu, C. M. Campbell, M. P. Carpenter, P. Chowdhury, M. Ciemala, N. Cieplicka-Orynczak, D. Cline, C. Clisu, H. L. Crawford, I. E. Dinescu, J. Dudouet, D. Filipescu, N. Florea, A. M. Forney, S. Fracassetti, A. Gade, I. Gheorghe, A. B. Hayes, I. Harca, J. Henderson, A. Ionescu, L. W. Iskra, M. Jentschel, F. Kandzia, Y. H. Kim, F. G. Kondev, G. Korschinek, U. Köster, Krishichayan, M. Krzysiek, T. Lauritsen, J. Li, R. Marginean, E. A. Maugeri, C. Mihai, R. E. Mihai, A. Mitu, P. Mutti, A. Negret, C. R. Nita, A. Olacel, A. Oprea, S. Pascu, C. Petrone, C. Porzio, D. Rhodes, D. Seweryniak, D. Schumann, C. Sotty, S. M. Stolze, R. Suvaila, S. Toma, S. Ujeniuc, W. B. Walters, C. Y. Wu, J. Wu, S. Zhu, and S. Ziliani
"Shape Coexistence at Zero Spin in 64Ni Driven by the Monopole Tensor Interaction"
Phys. Rev. Lett. 125, 102502
DOI: 10.1103/PhysRevLett.125.102502

LINKS:

http://www.ifj.edu.pl/
The website of the Institute of Nuclear Physics of the Polish Academy of Sciences

http://press.ifj.edu.pl/
Press releases of the Institute of Nuclear Physics of the Polish Academy of Sciences

IMAGES:

IFJ20201230_foto1EN.jpg
HR: http://press.ifj.edu.pl/news/2020/12/30/IFJ20201230_foto1EN.jpg
Deformation landscape of the nickel-64 nucleus. Prolate, oblate local minima and main spherical minimum are indicated by red, green and blue ellipsoids, respectively.
(Source: IFJ PAN)


[Attachments] See images for this press release:
The map of nuclear deformation takes the form of a mountain landscape

ELSE PRESS RELEASES FROM THIS DATE:

LSU Health New Orleans discovers potential new RX strategy for stroke

2021-01-02
New Orleans, LA - Research conducted at LSU Health New Orleans Neuroscience Center of Excellence reports that a combination of an LSU Health-patented drug and selected DHA derivatives is more effective in protecting brain cells and increasing recovery after stroke than a single drug. The findings are published in Brain Circulation, available here. Nicolas Bazan, MD, PhD, Boyd Professor, Professor of Neurology and Director of the Neuroscience Center of Excellence at LSU Health New Orleans School of Medicine, and Ludmila ...

New research may explain severe virus attacks on the lungs

New research may explain severe virus attacks on the lungs
2021-01-02
In some cases, immune cells in the lungs can contribute to worsening a virus attack. In a new study, researchers at Karolinska Institutet in Sweden describe how different kinds of immune cells, called macrophages, develop in the lungs and which of them may be behind severe lung diseases. The study, which was published in Immunity, may contribute to future treatments for COVID-19, among other diseases. The structure of the lungs exposes them to viruses and bacteria from both the air and the blood. Macrophages are immune cells that, among other things, protect the lungs from such attacks. ...

Scientists explore deficits in processing speed in individuals with spinal cord injury

Scientists explore deficits in processing speed in individuals with spinal cord injury
2021-01-02
East Hanover, NJ. December 30, 2020. A team of rehabilitation researchers has studied processing speed deficits in individuals with spinal cord injury (SCI), comparing their brain activation patterns with those of healthy age-matched controls, and older healthy individuals. They found that the SCI group and older controls had similar activation patterns, but the SCI group differed significantly from their age-matched controls. The article, "The neural mechanisms underlying processing speed deficits in individuals who have sustained a spinal cord injury: A pilot study" (doi: 10.1007/s10548-020-00798-x) was ...

Published data from Moderna COVID-19 vaccine trial show 94.1 percent efficacy

2021-01-02
BOSTON -- A peer-reviewed paper published in The New England Journal of Medicine provides data from the much-anticipated COVE study, which evaluated mRNA-1273, a vaccine candidate against COVID-19 manufactured by Moderna, Inc. Results from the primary analysis of the study, which will continue for two years, provide evidence that the vaccine can prevent symptomatic infection. Among the more than 30,000 participants randomized to receive the vaccine or a placebo, 11 of those in the vaccine group developed symptomatic COVID-19 compared to 185 participants who received the placebo, demonstrating 94.1 percent efficacy in preventing symptomatic COVID-19. Cases ...

How did trauma centers respond to COVID-19? New processes provide care to trauma patients while keeping providers safe

2021-01-02
December 30, 2020 - As the COVID-19 pandemic emerged, trauma centers faced unprecedented obstacles to providing care for injured patients. A look at steps taken by trauma centers in response to COVID-19 is provided by a survey in the January/February Journal for Healthcare Quality (JHQ), the peer-reviewed journal of the National Association for Healthcare Quality (NAHQ). The journal is published in the Lippincott portfolio by Wolters Kluwer. Trauma centers introduced new processes to optimize use of personal protective equipment (PPE), ICU beds, ventilators, and other limited resources, according to the report by David Bar-Or, MD, of ION Research, Englewood, Colo., ...

Peer-reviewed report on Moderna COVID-19 vaccine publishes

Peer-reviewed report on Moderna COVID-19 vaccine publishes
2021-01-02
WHAT: The investigational vaccine known as mRNA-1273 was 94.1% efficacious in preventing symptomatic coronavirus disease 2019 (COVID-19), according to preliminary results from a Phase 3 clinical trial reported in the New England Journal of Medicine. The vaccine also demonstrated efficacy in preventing severe COVID-19. Investigators identified no safety concerns and no evidence of vaccine-associated enhanced respiratory disease (VAERD). The vaccine was co-developed by Moderna, Inc., a biotechnology company based in Cambridge, Massachusetts, and the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes ...

DUAL takes AI to the next level

DUAL takes AI to the next level
2021-01-02
"Today's computer applications generate a large amount of data that needs to be processed by machine learning algorithms," says Yeseong Kim of Daegu Gyeongbuk Institute of Science and Technology (DGIST), who led the effort. Powerful 'unsupervised' machine learning involves training an algorithm to recognize patterns in large datasets without providing labelled examples for comparison. One popular approach is a clustering algorithm, which groups similar data into different classes. These algorithms are used for a wide variety of data analyses, such as identifying fake news on social media, filtering spam in our e-mails, and detecting ...

Blood vessel cells implicated in chronic inflammation of obesity

Blood vessel cells implicated in chronic inflammation of obesity
2021-01-02
DALLAS - Dec. 30, 2020 - When fat cells in the body are stuffed with excess fat, the surrounding tissue becomes inflamed. That chronic, low-level inflammation is one of the driving factors behind many of the diseases associated with obesity. Now, UT Southwestern scientists have discovered a type of cell responsible, at least in mice, for triggering this inflammation in fat tissue. Their findings, published in Nature Metabolism, could eventually lead to new ways to treat obesity. "The inflammation of fat cells in obese individuals is linked to many of the ...

Bionic idea boosts lithium-ion extraction

Bionic idea boosts lithium-ion extraction
2021-01-02
Lithium is an energy-critical element that is considered to be a geopolitically significant resource. However, the supply of lithium may not be enough to meet continuously increasing demand. As a result, scientists are looking for new ways to extract lithium ions. Ion selective membranes have already been used extensively for water treatment and ion sieving in electrodialysis technology. However, conventional membranes exhibit low and useless Li+ selectivity, making them insufficient for meeting industry requirements. Chinese scientists have recently made progress in the preparation and application of a bioinspired ...

Scientists find the error source of a sea-ice model varies with the season

Scientists find the error source of a sea-ice model varies with the season
2021-01-02
Arctic sea ice has been rapidly declining in recent decades, and changes in arctic sea ice can have a significant impact on global weather and climate through interactions with the atmosphere and oceans. In addition, the Arctic shipping routes are a shortcut to connect the major countries in the Northern Hemisphere. The Arctic region is also rich in natural resources and biological resources. Simulation of the Arctic sea ice could provide valuable information for Arctic shipping as well as climate studies, and it is therefore urgent to evaluate the ability to simulate Arctic sea ice and diagnose the sources of simulation errors. To address the issue of error source identification, ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] The map of nuclear deformation takes the form of a mountain landscape