MicroLED neural probe for neuroscience
Optogenetic control and recording technology aimed towards elucidation of brain function
2021-01-12
(Press-News.org) Overview:
Associate Professor Hiroto Sekiguchi and Ph.D. candidate Hiroki Yasunaga in the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology have developed a MicroLED neural probe for neuroscience. This MicroLED tool can optogenetically control and observe neural activity in the brain. Neural activity was successfully recorded using the neural probe, and sufficient light output was obtained from the MicroLED to activate neural activity. The developed MicroLED tool will contribute to the development of neuroscience research-purposed optogenetic technology.
Details:
A research team in the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology has developed a MicroLED neural probe for neuroscience. This MicroLED tool can optogenetically control and observe neural activity in the brain. The neural activity was successfully recorded using the neural probe, and a light output that is sufficient to activate neural activity is obtained from the MicroLED. This probe will contribute to the development of neuroscience research-purposed optogenetic technology. The results of their research will be published in Japanese Journal of Applied Physics on December 16, 2020.
Advanced information processes are associated with higher brain functions and are the products of complex interactions between interconnected neurons. Optogenetic technology uses light to precisely target specific cells for manipulation without affecting other cells in the brain, which contributes to elucidating how neural activity and animal behaviors are linked. Although an optical fiber has been used as a photodelivery system, there are some issues with high invasion of the brain tissue and complex spatial control.
In the field of engineering, microLEDs, which are 1/10 or 1/100 of the performance of the conventional LED, have been attracting attention towards the realization of the high-brightness, highly efficient, and high resolution display. In this study, we have fabricated a new device that applies this small LED to brain science. The developed epoch-making neural probe tool can solve tasks in conventional neuroscience tools and can control and record the functions of different nerves in a complex area with a high spatiotemporal resolution.
The leader of the research team, Associate Professor Hiroto Sekiguchi, said, "We have been developing LED materials and MicroLED fabrication technology for more than 10 years, and LEDS are being industrialized. I have to find a new field to utilize LED technology. At one point, I met a pharmacy researcher in an encounter unrelated to research, and talked about research in a casual conversation. Half a year later, I received a consultation about this research, which led to the results of this research. I think that the simple and easy-to-understand explanations and the active interest in discussing themes in different fields has led to present research in the area of fusion of pharmacy and engineering."
The research team believes that the developed MicroLED neural probe would be useful as a tool for in vivo optogenetics research. If the mechanism of the brain is elucidated, the findings can be utilized in various fields, such as the establishment of treatment for cancer, psychiatric disorders, and epilepsy, application to brain-machine interface, and development of new algorithms based on brain function.
INFORMATION:
Reference:
Hiroki Yasunaga, Toshihiro Takagi, Diasuke Shinko, Yusei Nakayama, Yuichi Takeuchi, Atsushi Nishikawa, Alexander Loesing, Mashiro Ohsawa, and Hiroto Sekiguchi (2021). Development of a neural probe integrated with high-efficiency MicroLEDs for in vivo application, 10.35848/1347-4065/abcffa/meta.
This work was partially supported by the Precursory Research for Embryonic Science and Technology Agency (JPMJPR1885), Research Foundation for OptoScience and Technology, and the Nitto Foundation.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-01-12
For other measures, however, the behaviour of the generations differs: "Of those under 40 years of age, 18 percent say they have food delivered more frequently", says BfR-President Professor Dr. Dr. Andreas Hensel. "In the age group 60 years and older, on the other hand, only seven percent make use of such offers."
https://www.bfr.bund.de/cm/349/210105-bfr-corona-monitor-en.pdf
In addition to more frequent ventilation, the respondents try to protect themselves from an infection mainly by wearing masks, keeping distance to other people and washing their hands more frequently. The mandatory use of masks was approved by 93 percent of the respondents, the distance regulation by 96 percent. ...
2021-01-12
In patients with anorexia, it could remain at the same level as before the start of the illness. The researchers led by Professor Martin Diers recommend a combination of cognitive behavioural therapy and the use of virtual reality to correct the distorted body schema. The study is published in the International Journal of Eating Disorders on 20 December 2020.
Understanding the unconscious
The distorted perception of one's own body is a characteristic symptom of anorexia nervosa. It has long been known that patients overestimate the dimensions of their body. "This ...
2021-01-12
Severe thunderstorms often produce lightning, heavy precipitation, hails, and wind gusts, and cause significant economic losses and casualties in the region they passed through. So, their prediction is one of the primary concerns of not only weather forecasters but also local government and public. However, the accurate forecasting on severe thunderstorm is still a great challenge because of its complicated mechanism of formation and enhancement.
Beijing metropolitan region is one of the most developed areas in China and is also influenced greatly by severe thunderstorms. ...
2021-01-12
Groundwater flow and seepage can form large gullies along coastal cliffs in the matter of days, it has been discovered, as per a recently-published paper.
An international team of scientists from Malta, Germany, Romania, New Zealand and USA has used drones and satellite imagery to monitor a stretch of coastline near Ashburton (South Island, New Zealand). They found that gullies up to 30m in length can develop in less than a week.
Field observations and numerical models have shown that groundwater plays a key role in forming these gullies, by either eroding tunnels or triggering landslides.
Gullies are an important coastal hazard. There ...
2021-01-12
To resolve the energy crisis and environmental issues, research to move away from fossil fuels and convert to eco-friendly and sustainable hydrogen energy is well underway around the world. Recently, a team of researchers at POSTECH has proposed a way to efficiently produce hydrogen fuel via water-electrolysis using inexpensive and readily available nickel as an electrocatalyst, greenlighting the era of hydrogen economy.
A POSTECH research team led by Professor Jong Kyu Kim and Ph.D. candidate Jaerim Kim of the Department of Materials Science and Engineering and a team led by Professor Jeong Woo Han and Ph.D. candidate Hyeonjung Jung of the Department of Chemical Engineering have jointly developed a highly efficient nickel-based catalyst system doped with oxophilic transition metal atoms ...
2021-01-12
Researchers at Tampere University, Finland, have published new results in collaboration with an international research network that help to understand the biological phenomena mediated by cell membrane integrin receptors and contribute to the development of methods for the treatment of cancer.
In the cell membrane, integrins form the connection between the cytoskeleton and the extracellular matrix. The regulation of integrin activity is essential for the function of tissues and individual cells.
The studies investigated the structure and function of talin, a cytoskeletal protein, which is important in the regulation of the integrin receptor activity. Talin binds to integrin via its "head" and connects it to the cytoskeleton, thereby acting as a part of the ...
2021-01-12
Researchers at the University of York are calling for more stringent regulatory measures to reduce the health burden of smokeless tobacco, a product often found in UK stores without the proper health warnings and as a result of illicit trading.
Smokeless tobacco is particularly popular in Asia and Africa and includes chewing tobacco as well as various types of nasal tobacco. They contain high levels of nicotine as well as cancer producing toxic chemicals, making head and neck cancers common in those who consume smokeless tobacco products.
In a study of 25 wards across five boroughs - Birmingham, Bradford, Blackburn, Leicester, and ...
2021-01-12
If you were an owner of a newly set-up company, you would most likely be focused on building brand awareness to reach out to as many people as possible. But how can you do so with budget constraints?
These days, businesses have turned to a select group of people who are active on social media platforms as a cost efficient way to drive their promotional efforts. Also referred to as 'influencers', they have the ability to influence the opinions or buying decisions of others.
The company would then focus their efforts on influencing the influencers, hoping that, in turn, their product information gets disseminated to the largest possible number of people through these influencers' wide ...
2021-01-12
Dilated cardiomyopathy (DCM) is a condition caused by the weakening of the heart muscle, affecting the ventricles (chambers in the heart that push blood around the body as it contracts). If allowed to progress unchecked, DCM can lead to heart failure and death, especially in children. The only cure, at present, is a heart transplant, which comes with its own challenges: long waiting times to secure a suitable donor heart, the possibility of organ rejection, long hospitalizations and recovery times, among others.
In recent decades, stem cells have become the cornerstone ...
2021-01-12
Tsukuba, Japan - Proton-exchange membrane (PEM) fuel cells are an energy storage technology that will help lower the environmental footprint of transportation. These fuel cells make use of a chemical reaction known as oxygen reduction. This reaction needs a low-cost catalyst for widespread commercial applications. Nitrogen-doped carbon is one such catalyst, but the chemical details of how nitrogen doping works are rather controversial. Such knowledge is important to improving the function of PEM fuel cells in future technologies.
In a study recently published in Angewandte Chemie International Edition, researchers ...
LAST 30 PRESS RELEASES:
[Press-News.org] MicroLED neural probe for neuroscience
Optogenetic control and recording technology aimed towards elucidation of brain function