PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

SUTD develops new model of influence maximization

The model will enhance the robustness of networks to adversarial attacks and will benefit both practitioners and organizations.

SUTD develops new model of influence maximization
2021-01-12
(Press-News.org) If you were an owner of a newly set-up company, you would most likely be focused on building brand awareness to reach out to as many people as possible. But how can you do so with budget constraints?

These days, businesses have turned to a select group of people who are active on social media platforms as a cost efficient way to drive their promotional efforts. Also referred to as 'influencers', they have the ability to influence the opinions or buying decisions of others.

The company would then focus their efforts on influencing the influencers, hoping that, in turn, their product information gets disseminated to the largest possible number of people through these influencers' wide social media networks.

This process, referred to as 'influence maximization' is well studied in social networks and computer science. Most often, one aspires to choose only a small number (let us call this k) of influencers, due to budget considerations.

The important questions to answer would then be; how do companies go about choosing these k influencers? How would they, in turn, model their behaviour? Does each of them influence their contacts independently or are their behaviours somehow linked? What are the computational implications?

Traditionally a popular model in influence maximization has been the independent cascade model wherein the assumption is that all the members in the network influence their contacts independently of others.

However, there could be hidden correlations in their behaviour which are not immediately evident.

In a study led by a team of researchers from the Singapore University of Technology and Design (SUTD), they computed the best k influencers, assuming the correlations between the way the members in the network behave is most detrimental to the company's interest. Thus the model assumed is of adversarial nature.

The team showed that such a model has computational benefits over an independent cascade model. They also performed a comparison of the set of seed agents chosen by their model versus the set chosen by the independent cascade model.

Their research work also provided a snapshot of their results from a sample network (refer to image).

"Evaluating and enhancing the robustness of networks to adversarial attacks will be important in various domains in the future. This work provides some useful computationally tractable models which can be used by practitioners, agencies and companies in such setups," said principal investigator Professor Karthik Natarajan from SUTD.

INFORMATION:

This work 'Correlation Robust Influence Maximization' was presented at NeurIPS 2020.


[Attachments] See images for this press release:
SUTD develops new model of influence maximization

ELSE PRESS RELEASES FROM THIS DATE:

Hope for children with rare heart condition: novel stem cell therapy to save the day

Hope for children with rare heart condition: novel stem cell therapy to save the day
2021-01-12
Dilated cardiomyopathy (DCM) is a condition caused by the weakening of the heart muscle, affecting the ventricles (chambers in the heart that push blood around the body as it contracts). If allowed to progress unchecked, DCM can lead to heart failure and death, especially in children. The only cure, at present, is a heart transplant, which comes with its own challenges: long waiting times to secure a suitable donor heart, the possibility of organ rejection, long hospitalizations and recovery times, among others. In recent decades, stem cells have become the cornerstone ...

Sustainable transportation: clearing the air on nitrogen doping

Sustainable transportation: clearing the air on nitrogen doping
2021-01-12
Tsukuba, Japan - Proton-exchange membrane (PEM) fuel cells are an energy storage technology that will help lower the environmental footprint of transportation. These fuel cells make use of a chemical reaction known as oxygen reduction. This reaction needs a low-cost catalyst for widespread commercial applications. Nitrogen-doped carbon is one such catalyst, but the chemical details of how nitrogen doping works are rather controversial. Such knowledge is important to improving the function of PEM fuel cells in future technologies. In a study recently published in Angewandte Chemie International Edition, researchers ...

Low fitness linked to higher psoriasis risk later in life

Low fitness linked to higher psoriasis risk later in life
2021-01-12
In a major register-based study, scientists at University of Gothenburg, Sweden, have now demonstrated a connection between inferior physical fitness in young adults and elevated risk of the autoimmune disease psoriasis. For the male recruits to compulsory military training who were rated as the least fit, the risk of developing psoriasis later was 35 percent higher than for the fittest. The study was based on data on more than 1.2 million men conscripted, aged 18, into the Swedish Armed Forces between the years 1968 and 2005. During the enrollment ...

The three days pregnancy sickness is most likely to start pinpointed

2021-01-12
Nausea and vomiting symptoms during pregnancy start within a three day timeframe for most women, according to new study from University of Warwick More accurate measurement achieved by calculating start of pregnancy from date of ovulation - rather than last menstrual period Points to a potential biological cause for nausea and vomiting, and supports the view that the condition has been trivialised Researchers from the University of Warwick have narrowed the time frame that nausea and vomiting during pregnancy will potentially start to just three days for most women, opening up the possibility for scientists to identify ...

Like plants do: non-classical photosynthesis by earth's inorganic semiconducting minerals

Like plants do: non-classical photosynthesis by earths inorganic semiconducting minerals
2021-01-12
Photosynthesis, the process by which plants and other organisms convert sunlight into chemical energy, has been a major player during the evolution of life and our planet's atmosphere. Although most of the ins and outs of photosynthesis are understood, how the necessary mechanisms evolved is still a topic of debate. The answer to this question, however, may actually lie buried in the mineral world. In a recent study published in Earth Science Frontiers (10.13745/j.esf.sf.2020.12.3), scientists from Peking University, China, shifted the focus in photosynthesis research from plants and bacteria one step further back to rocks and substances found in what's ...

UK government must urgently rethink lateral flow test roll out, warn experts

2021-01-12
UK government plans to widen the roll out of the Innova lateral flow test without supporting evidence risks serious harm, warn experts in The BMJ today. More than £1 billion have been spent on purchasing lateral flow tests, but Professor Jon Deeks and colleagues argue that the public is being misled about their accuracy, as well as the risks and implications of false negative results, and they call on the government urgently to change course. Mass testing may be helpful and necessary in certain circumstances if delivered to high quality, they explain, but the Innova lateral flow test is not fit for this purpose. For example, in the Liverpool pilot study, 60% of infected symptomless people went undetected, including 33% of those with ...

UCLA scientists develop method to more efficiently isolate and identify rare T cells

UCLA scientists develop method to more efficiently isolate and identify rare T cells
2021-01-12
Scientists from the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA have developed a technique that will enable researchers to more efficiently isolate and identify rare T cells that are capable of targeting viruses, cancer and other diseases. The approach could increase scientists' understanding of how these critical immune cells respond to a wide range of illnesses and advance the development of T cell therapies. This includes immunotherapies that aim to boost the function and quantity of cancer or virus-targeting T cells and therapies ...

Study pinpoints hurdles faced by women and minorities in U.S. chemistry departments

2021-01-12
EUGENE, Ore. -- Jan. 12, 2020 -- Insufficient interactions with academic advisors and peers and financial problems are derailing career aspirations of women and minority groups pursing graduate degrees in the nation's highest-funded chemistry programs. The challenges, tied to systemic gender and racial inequities, emerged from a deep analysis of data compiled in a 2013 American Chemical Society survey of 1,375 chemistry graduate students in the top 100 university chemistry departments in terms of research funding reported by the National Science Foundation. The findings are detailed in a study, led by University of Oregon researchers, publishing this ...

Climate change reduces the abundance and diversity of wild bees, study finds

Climate change reduces the abundance and diversity of wild bees, study finds
2021-01-12
UNIVERSITY PARK, Pa. -- Wild bees are more affected by climate change than by disturbances to their habitats, according to a team of researchers led by Penn State. The findings suggest that addressing land-use issues alone will not be sufficient to protecting these important pollinators. "Our study found that the most critical factor influencing wild bee abundance and species diversity was the weather, particularly temperature and precipitation," said Christina Grozinger, Distinguished Professor of Entomology and director of the Center for Pollinator Research, Penn State. "In the Northeastern United States, past trends and future predictions show a changing climate with warmer winters, more intense precipitation ...

Monash University leads breakthrough against antibiotic-resistance

2021-01-12
A major risk of being hospitalised is catching a bacterial infection. Hospitals, especially areas including intensive care units and surgical wards, are teeming with bacteria, some of which are resistant to antibiotics - they are infamously known as 'superbugs'. Superbug infections are difficult and expensive to treat, and can often lead to dire consequences for the patient. Now, new research published today in the prestigious journal Nature Microbiology has discovered how to revert antibiotic-resistance in one of the most dangerous superbugs. The strategy involves ...

LAST 30 PRESS RELEASES:

In chimpanzees, peeing is contagious

Scientists uncover structure of critical component in deadly Nipah virus

Study identifies benefits, risks linked to popular weight-loss drugs

Ancient viral DNA shapes early embryo development

New study paves way for immunotherapies tailored for childhood cancers

Association of waist circumference with all-cause and cardiovascular mortalities in diabetes from the National Health and Nutrition Examination Survey 2003–2018

A new chapter in Roman administration: Insights from a late Roman inscription

Global trust in science remains strong

New global research reveals strong public trust in science

Inflammation may explain stomach problems in psoriasis sufferers

Guidance on animal-borne infections in the Canadian Arctic

Fatty muscles raise the risk of serious heart disease regardless of overall body weight

HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

[Press-News.org] SUTD develops new model of influence maximization
The model will enhance the robustness of networks to adversarial attacks and will benefit both practitioners and organizations.