Nanosheet-based electronics could be one drop away
2021-01-12
(Press-News.org) Scientists at Japan's Nagoya University and the National Institute for Materials Science have found that a simple one-drop approach is cheaper and faster for tiling functional nanosheets together in a single layer. If the process, described in the journal ACS Nano, can be scaled up, it could advance development of next-generation oxide electronics.
"Drop casting is one of the most versatile and cost-effective methods for depositing nanomaterials on a solid surface," says Nagoya University materials scientist Minoru Osada, the study's corresponding author. "But it has serious drawbacks, one being the so-called coffee-ring effect: a pattern left by particles once the liquid they are in evaporates. We found, to our great surprise, that controlled convection by a pipette and a hotplate causes uniform deposition rather than the ring-like pattern, suggesting a new possibility for drop casting."
The process Osada describes is surprisingly simple, especially when compared to currently available tiling techniques, which can be costly, time-consuming, and wasteful. The scientists found that dropping a solution containing 2D nanosheets with a simple pipette onto a substrate heated on a hotplate to a temperature of about 100°C, followed by removal of the solution, causes the nanosheets to come together in about 30 seconds to form a tile-like layer.
Analyses showed that the nanosheets were uniformly distributed over the substrate's surface, with limited gaps. This is probably a result of surface tension driving how particles disperse, and the shape of the deposited droplet changing as the solution evaporates.
The scientists used the process to deposit particle solutions of titanium dioxide, calcium niobate, ruthenium oxide, and graphene oxide. They also tried different sizes and shapes of a variety of substrates, including silicon, silicon dioxide, quartz glass, and polyethylene terephthalate (PET). They found they could control the surface tension and evaporation rate of the solution by adding a small amount of ethanol.
Furthermore, the team successfully used this process to deposit multiple layers of tiled nanosheets, fabricating functional nanocoatings with various features: conducting, semiconducting, insulating, magnetic and photochromic.
"We expect that our solution-based process using 2D nanosheets will have a great impact on environmentally benign manufacturing and oxide electronics," says Osada. This could lead to next-generation transparent and flexible electronics, optoelectronics, magnetoelectronics, and power harvesting devices.
INFORMATION:
The study, " Single Droplet Assembly for Two-Dimensional Nanosheet Tiling," was published online in the journal ACS Nano on October 29, 2020 at DOI: 10.1021/acsnano.0c05434.
About Nagoya University, Japan
Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics - Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry - Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.
Website: http://en.nagoya-u.ac.jp/
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-01-12
Silicon carbide (SiC), a versatile and resistant material that exists in multiple crystalline forms, has attracted much attention thanks to its unique electronic properties. From its use in the first LED devices, to its applications in high-voltage devices with low power losses, SiC displays exceptional semiconductor behavior. So far, the operating voltages for unipolar SiC devices are below 3.3 kV. Though useful for the electronic systems of cars, trains, and home appliances, unipolar SiC-based devices cannot be used in power generation and distribution systems, which operate at voltages above 10 kV.
Some researchers believe that the solution to this conundrum lies in bipolar SiC devices, which offer low on-resistance (and hence lower losses) ...
2021-01-12
Overview:
Associate Professor Hiroto Sekiguchi and Ph.D. candidate Hiroki Yasunaga in the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology have developed a MicroLED neural probe for neuroscience. This MicroLED tool can optogenetically control and observe neural activity in the brain. Neural activity was successfully recorded using the neural probe, and sufficient light output was obtained from the MicroLED to activate neural activity. The developed MicroLED tool will contribute to the development of neuroscience research-purposed ...
2021-01-12
For other measures, however, the behaviour of the generations differs: "Of those under 40 years of age, 18 percent say they have food delivered more frequently", says BfR-President Professor Dr. Dr. Andreas Hensel. "In the age group 60 years and older, on the other hand, only seven percent make use of such offers."
https://www.bfr.bund.de/cm/349/210105-bfr-corona-monitor-en.pdf
In addition to more frequent ventilation, the respondents try to protect themselves from an infection mainly by wearing masks, keeping distance to other people and washing their hands more frequently. The mandatory use of masks was approved by 93 percent of the respondents, the distance regulation by 96 percent. ...
2021-01-12
In patients with anorexia, it could remain at the same level as before the start of the illness. The researchers led by Professor Martin Diers recommend a combination of cognitive behavioural therapy and the use of virtual reality to correct the distorted body schema. The study is published in the International Journal of Eating Disorders on 20 December 2020.
Understanding the unconscious
The distorted perception of one's own body is a characteristic symptom of anorexia nervosa. It has long been known that patients overestimate the dimensions of their body. "This ...
2021-01-12
Severe thunderstorms often produce lightning, heavy precipitation, hails, and wind gusts, and cause significant economic losses and casualties in the region they passed through. So, their prediction is one of the primary concerns of not only weather forecasters but also local government and public. However, the accurate forecasting on severe thunderstorm is still a great challenge because of its complicated mechanism of formation and enhancement.
Beijing metropolitan region is one of the most developed areas in China and is also influenced greatly by severe thunderstorms. ...
2021-01-12
Groundwater flow and seepage can form large gullies along coastal cliffs in the matter of days, it has been discovered, as per a recently-published paper.
An international team of scientists from Malta, Germany, Romania, New Zealand and USA has used drones and satellite imagery to monitor a stretch of coastline near Ashburton (South Island, New Zealand). They found that gullies up to 30m in length can develop in less than a week.
Field observations and numerical models have shown that groundwater plays a key role in forming these gullies, by either eroding tunnels or triggering landslides.
Gullies are an important coastal hazard. There ...
2021-01-12
To resolve the energy crisis and environmental issues, research to move away from fossil fuels and convert to eco-friendly and sustainable hydrogen energy is well underway around the world. Recently, a team of researchers at POSTECH has proposed a way to efficiently produce hydrogen fuel via water-electrolysis using inexpensive and readily available nickel as an electrocatalyst, greenlighting the era of hydrogen economy.
A POSTECH research team led by Professor Jong Kyu Kim and Ph.D. candidate Jaerim Kim of the Department of Materials Science and Engineering and a team led by Professor Jeong Woo Han and Ph.D. candidate Hyeonjung Jung of the Department of Chemical Engineering have jointly developed a highly efficient nickel-based catalyst system doped with oxophilic transition metal atoms ...
2021-01-12
Researchers at Tampere University, Finland, have published new results in collaboration with an international research network that help to understand the biological phenomena mediated by cell membrane integrin receptors and contribute to the development of methods for the treatment of cancer.
In the cell membrane, integrins form the connection between the cytoskeleton and the extracellular matrix. The regulation of integrin activity is essential for the function of tissues and individual cells.
The studies investigated the structure and function of talin, a cytoskeletal protein, which is important in the regulation of the integrin receptor activity. Talin binds to integrin via its "head" and connects it to the cytoskeleton, thereby acting as a part of the ...
2021-01-12
Researchers at the University of York are calling for more stringent regulatory measures to reduce the health burden of smokeless tobacco, a product often found in UK stores without the proper health warnings and as a result of illicit trading.
Smokeless tobacco is particularly popular in Asia and Africa and includes chewing tobacco as well as various types of nasal tobacco. They contain high levels of nicotine as well as cancer producing toxic chemicals, making head and neck cancers common in those who consume smokeless tobacco products.
In a study of 25 wards across five boroughs - Birmingham, Bradford, Blackburn, Leicester, and ...
2021-01-12
If you were an owner of a newly set-up company, you would most likely be focused on building brand awareness to reach out to as many people as possible. But how can you do so with budget constraints?
These days, businesses have turned to a select group of people who are active on social media platforms as a cost efficient way to drive their promotional efforts. Also referred to as 'influencers', they have the ability to influence the opinions or buying decisions of others.
The company would then focus their efforts on influencing the influencers, hoping that, in turn, their product information gets disseminated to the largest possible number of people through these influencers' wide ...
LAST 30 PRESS RELEASES:
[Press-News.org] Nanosheet-based electronics could be one drop away