PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

NASA missions unmask magnetar eruptions in nearby galaxies

NASA missions unmask magnetar eruptions in nearby galaxies
2021-01-13
(Press-News.org) On April 15, 2020, a brief burst of high-energy light swept through the solar system, triggering instruments on several NASA and European spacecraft. Now, multiple international science teams conclude that the blast came from a supermagnetized stellar remnant known as a magnetar located in a neighboring galaxy.

This finding confirms long-held suspicions that some gamma-ray bursts (GRBs) - cosmic eruptions detected in the sky almost daily - are in fact powerful flares from magnetars relatively close to home.

"This has always been regarded as a possibility, and several GRBs observed since 2005 have provided tantalizing evidence," said Kevin Hurley, a Senior Space Fellow with the Space Sciences Laboratory at the University of California, Berkeley, who joined several scientists to discuss the burst at the virtual 237th meeting of the American Astronomical Society. "The April 15 event is a game changer because we found that the burst almost certainly lies within the disk of the nearby galaxy NGC 253."

Papers analyzing different aspects of the event and its implications were published on Jan. 13 in the journals Nature and Nature Astronomy.

GRBs, the most powerful explosions in the cosmos, can be detected across billions of light-years. Those lasting less than about two seconds, called short GRBs, occur when a pair of orbiting neutron stars - both the crushed remnants of exploded stars - spiral into each other and merge. Astronomers confirmed this scenario for at least some short GRBs in 2017, when a burst followed the arrival of gravitational waves - ripples in space-time - produced when neutron stars merged 130 million light-years away.

Magnetars are neutron stars with the strongest-known magnetic fields, with up to a thousand times the intensity of typical neutron stars and up to 10 trillion times the strength of a refrigerator magnet. Modest disturbances to the magnetic field can cause magnetars to erupt with sporadic X-ray bursts for weeks or longer.

Rarely, magnetars produce enormous eruptions called giant flares that produce gamma rays, the highest-energy form of light.

Most of the 29 magnetars now cataloged in our Milky Way galaxy exhibit occasional X-ray activity, but only two have produced giant flares. The most recent event, detected on Dec. 27, 2004, produced measurable changes in Earth's upper atmosphere despite erupting from a magnetar located about 28,000 light-years away.

Shortly before 4:42 a.m. EDT on April 15, 2020, a brief, powerful burst of X-rays and gamma rays swept past Mars, triggering the Russian High Energy Neutron Detector aboard NASA's Mars Odyssey spacecraft, which has been orbiting the Red Planet since 2001. About 6.6 minutes later, the burst triggered the Russian Konus instrument aboard NASA's Wind satellite, which orbits a point between Earth and the Sun located about 930,000 miles (1.5 million kilometers) away. After another 4.5 seconds, the radiation passed Earth, triggering instruments on NASA's Fermi Gamma-ray Space Telescope, as well as on the European Space Agency's INTEGRAL satellite and Atmosphere-Space Interactions Monitor (ASIM) aboard the International Space Station.

The eruption occurred beyond the field of view of the Burst Alert Telescope (BAT) on NASA's Neil Gehrels Swift Observatory, so its onboard computer did not alert astronomers on the ground. However, thanks to a new capability called the Gamma-ray Urgent Archiver for Novel Opportunities (GUANO), the Swift team can beam back BAT data when other satellites trigger on a burst. Analysis of this data provided additional insight into the event.

The pulse of radiation lasted just 140 milliseconds - as fast as the blink of an eye or a finger snap.

The Fermi, Swift, Wind, Mars Odyssey and INTEGRAL missions all participate in a GRB-locating system called the InterPlanetary Network (IPN). Now funded by the Fermi project, the IPN has operated since the late 1970s using different spacecraft located throughout the solar system. Because the signal reached each detector at different times, any pair of them can help narrow down a burst's location in the sky. The greater the distances between spacecraft, the better the technique's precision.

The IPN placed the April 15 burst, called GRB 200415A, squarely in the central region of NGC 253, a bright spiral galaxy located about 11.4 million light-years away in the constellation Sculptor. This is the most precise sky position yet determined for a magnetar located beyond the Large Magellanic Cloud, a satellite of our galaxy and host to a giant flare in 1979, the first ever detected.

Giant flares from magnetars in the Milky Way and its satellites evolve in a distinct way, with a rapid rise to peak brightness followed by a more gradual tail of fluctuating emission. These variations result from the magnetar's rotation, which repeatedly brings the flare location in and out of view from Earth, much like a lighthouse.

Observing this fluctuating tail is conclusive evidence of a giant flare. Seen from millions of light-years away, though, this emission is too dim to detect with today's instruments. Because these signatures are missing, giant flares in our galactic neighborhood may be masquerading as much more distant and powerful merger-type GRBs.

A detailed analysis of data from Fermi's Gamma-ray Burst Monitor (GBM) and Swift's BAT provides strong evidence that the April 15 event was unlike any burst associated with mergers, noted Oliver Roberts, an associate scientist at Universities Space Research Association's Science and Technology Institute in Huntsville, Alabama, who led the study.

In particular, this was the first giant flare known to occur since Fermi's 2008 launch, and the GBM's ability to resolve changes at microsecond timescales proved critical. The observations reveal multiple pulses, with the first one appearing in just 77 microseconds - about 13 times the speed of a camera flash and nearly 100 times faster than the rise of the fastest GRBs produced by mergers. The GBM also detected rapid variations in energy over the course of the flare that have never been observed before.

"Giant flares within our galaxy are so brilliant that they overwhelm our instruments, leaving them to hang onto their secrets," Roberts said. "For the first time, GRB 200415A and distant flares like it allow our instruments to capture every feature and explore these powerful eruptions in unparalleled depth."

Giant flares are poorly understood, but astronomers think they result from a sudden rearrangement of the magnetic field. One possibility is that the field high above the surface of the magnetar may become too twisted, suddenly releasing energy as it settles into a more stable configuration. Alternatively, a mechanical failure of the magnetar's crust - a starquake - may trigger the sudden reconfiguration.

Roberts and his colleagues say the data show some evidence of seismic vibrations during the eruption. The highest-energy X-rays recorded by Fermi's GBM reached 3 million electron volts (MeV), or about a million times the energy of blue light, itself a record for giant flares. The researchers say this emission arose from a cloud of ejected electrons and positrons moving at about 99% the speed of light. The short duration of the emission and its changing brightness and energy reflect the magnetar's rotation, ramping up and down like the headlights of a car making a turn. Roberts describes it as starting off as an opaque blob - he pictures it as resembling a photon torpedo from the "Star Trek" franchise - that expands and diffuses as it travels.

The torpedo also factors into one of the event's biggest surprises. Fermi's main instrument, the Large Area Telescope (LAT), also detected three gamma rays, with energies of 480 MeV, 1.3 billion electron volts (GeV), and 1.7 GeV - the highest-energy light ever detected from a magnetar giant flare. What's surprising is that all of these gamma rays appeared long after the flare had diminished in other instruments.

Nicola Omodei, a senior research scientist at Stanford University in California, led the LAT team investigating these gamma rays, which arrived between 19 seconds and 4.7 minutes after the main event. The scientists conclude that this signal most likely comes from the magnetar flare. "For the LAT to detect a random short GRB in the same region of the sky and at nearly the same time as the flare, we would have to wait, on average, at least 6 million years," he explained.

A magnetar produces a steady outflow of fast-moving particles. As it moves through space, this outflow plows into, slows, and diverts interstellar gas. The gas piles up, becomes heated and compressed, and forms a type of shock wave called a bow shock.

In the model proposed by the LAT team, the flare's initial pulse of gamma rays travels outward at the speed of light, followed by the cloud of ejected matter, which is moving nearly as fast. After several days, they both reach the bow shock. The gamma rays pass through. Seconds later, the cloud of particles - now expanded into a vast, thin shell - collides with accumulated gas at the bow shock. This interaction creates shock waves that accelerate particles, producing the highest-energy gamma rays after the main burst.

The April 15 flare proves that these events constitute their own class of GRBs. Eric Burns, an assistant professor of physics and astronomy at Louisiana State University in Baton Rouge, led a study investigating additional suspects using data from numerous missions. The findings will appear in The Astrophysical Journal Letters. Bursts near the galaxy M81 in 2005 and the Andromeda galaxy (M31) in 2007 had already been suggested to be giant flares, and the team additionally identified a flare in M83, also seen in 2007 but newly reported. Add to these the giant flare from 1979 and those observed in our Milky Way in 1998 and 2004.

"It's a small sample, but we now have a better idea of their true energies, and how far we can detect them," Burns said. "A few percent of short GRBs may really be magnetar giant flares. In fact, they may be the most common high-energy outbursts we've detected so far beyond our galaxy - about five times more frequent than supernovae."

INFORMATION:


[Attachments] See images for this press release:
NASA missions unmask magnetar eruptions in nearby galaxies

ELSE PRESS RELEASES FROM THIS DATE:

Study: Many summer camps don't require childhood immunizations

2021-01-13
While most children need to show immunization records to attend school, the same may not be true for camps, a new study suggests. Nearly half of summer camps surveyed by researchers didn't have official policies requiring campers be vaccinated, according to findings led by Michigan Medicine C.S. Mott Children's Hospital in END ...

A niche for the eye

A niche for the eye
2021-01-13
KANSAS CITY, MO--What if the degenerative eye conditions that lead to glaucoma, corneal dystrophy, and cataracts could be detected and treated before vision is impaired? Recent findings from the lab of Investigator Ting Xie, PhD, at the Stowers Institute for Medical Research point to the ciliary body as a key to unlocking this possibility. Previous work from the lab showed that when mouse stem cells were differentiated into light-sensing photoreceptor cells in vitro, and then transplanted back into mice with a degenerative condition of the retina, they could partially restore vision. However, the transplanted photoreceptors only lasted three to four months. "You cannot cure the condition in a diseased eye if you don't know what ...

The compound that makes chili peppers spicy also boosts perovskite solar cell performance

The compound that makes chili peppers spicy also boosts perovskite solar cell performance
2021-01-13
Scientists in China and Sweden have determined that a pinch of capsaicin, the chemical compound that gives chili peppers their spicy sting, may be a secret ingredient for more stable and efficient perovskite solar cells. The research, published January 13 in the journal Joule, determined that sprinkling capsaicin into the precursor of methylammonium lead triiodide (MAPbI3) perovskite during the manufacturing process led to a greater abundance of electrons (instead of empty placeholders) to conduct current at the semiconductor's surface. The addition resulted in polycrystalline MAPbI3 solar cells with the most efficient charge transport to date. "In the future, green and sustainable forest-based biomaterial ...

Asian butterfly mimics other species to defend against predators

2021-01-13
NEW YORK, January 13, 2021 -- Many animal and insect species use Batesian mimicry -- mimicking a poisonous species -- as a defense against predators. The common palmfly Elymnias hypermnestra -- a species of satyrine butterfly that is found throughout wide areas of tropical and subtropical Asia -- adds a twist to this evolutionary strategy. The females evolved two distinct forms, either orange or dark brown, imitating two separate poisonous model species, Danaus or Euploea. The males are uniformly brown. A population group is either entirely brown (both males and females) or mixed (brown males and orange females). David Lohman, ...

The dire wolf was a distinct species, different from the gray wolf, biologists discover

The dire wolf was a distinct species, different from the gray wolf, biologists discover
2021-01-13
The iconic, prehistoric dire wolf, which prowled through Los Angeles and elsewhere in the Americas over 11 millennia ago, was a distinct species from the slightly smaller gray wolf, an international team of scientists reports today in the journal Nature. The study, which puts to bed a mystery that biologists have pondered for more than 100 years, was led by researchers from UCLA, along with colleagues from Durham University in the U.K., Australia's Adelaide University and Germany's Ludwig Maximilian University. "The terrifying dire wolf, a legendary symbol of Los Angeles and the La Brea Tar Pits, has earned its place among the many large, unique species that went extinct at the end of the Pleistocene ...

Study finds neglected mutations may play important role in autism spectrum disorder

2021-01-13
Mutations that occur in certain DNA regions, called tandem repeats, may play a significant role in autism spectrum disorders, according to research led by Melissa Gymrek, assistant professor in the UC San Diego Department of Computer Science and Engineering and School of Medicine. The study, which was published in Nature on Jan. 14, was co-authored by UCLA professor of human genetics Kirk Lohmueller and highlights the contributions these understudied mutations can make to disease. "Few researchers really study these repetitive regions because they're generally non-coding--they do not make proteins; their function is ...

Ancient DNA reveals secrets of Game of Thrones wolves

2021-01-13
Extinct dire wolves split off from other wolves nearly six million years ago and were only a distant relative of today's wolves, according to new research published in Nature today (13 January). Dire wolves, made famous in the TV show Game of Thrones, were common across North America until around 13,000 years ago, after which they went extinct. The study shows that dire wolves were so different from other canine species like coyotes and grey wolves that they were not able to breed with each other. Previous analyses, based on morphology alone, had led scientists to believe that dire wolves were closely related to grey wolves. The research was led by Durham University in the UK alongside scientists at the University of Oxford, Ludwig Maximilian University in ...

Columbia engineers first to observe avalanches in nanoparticles

Columbia engineers first to observe avalanches in nanoparticles
2021-01-13
New York, NY--January 13, 2021--Researchers at Columbia Engineering report today that they have developed the first nanomaterial that demonstrates "photon avalanching," a process that is unrivaled in its combination of extreme nonlinear optical behavior and efficiency. The realization of photon avalanching in nanoparticle form opens up a host of sought-after applications, from real-time super-resolution optical microscopy, precise temperature and environmental sensing, and infrared light detection, to optical analog-to-digital conversion and quantum sensing. "Nobody has seen avalanching behavior like this in nanomaterials before," said James Schuck, associate professor of mechanical engineering, who led the study published today by Nature. "We ...

Error protected quantum bits entangled

Error protected quantum bits entangled
2021-01-13
Even computers can miscalculate. Already small disturbances change stored information and corrupt results. That is why computers use methods to continuously correct such errors. In quantum computers, the vulnerability to errors can be reduced by storing quantum information in more than a single quantum particle. These logical quantum bits are less sensitive to errors. In recent years, theorists have developed many different error correction codes and optimized them for different tasks. "The most promising codes in quantum error correction are those defined on a two-dimensional lattice," ...

Asian butterfly populations show different mimicry patterns thanks to genetic 'switch'

Asian butterfly populations show different mimicry patterns thanks to genetic switch
2021-01-13
A new study by researchers at the University of Chicago and the City College of New York (CCNY) has identified a unique, genetic "mimicry switch" that determines whether or not male and female Elymnias hypermnestra palmflies mimic the same or different species of butterflies. The results indicate that sexual dimorphism has repeatedly emerged in different palmfly populations, and linked the trait to a gene associated with melanin localization and regulation. Published on Jan. 13 in the journal END ...

LAST 30 PRESS RELEASES:

BioChatter: making large language models accessible for biomedical research

Grass surfaces drastically reduce drone noise making the way for soundless city skies

Extent of microfibre pollution from textiles to be explored at new research hub

Many Roads Lead to… the embryo

Dining out with San Francisco’s coyotes

What’s the mechanism behind behavioral side effects of popular weight loss drugs?

How employee trust in AI drives performance and adoption

Does sleep apnea treatment influence patients’ risk of getting into car accidents?

Do minimum wage hikes negatively impact students’ summer employment?

Exposure to stress during early pregnancy affects offspring into adulthood

Curious blue rings in trees and shrubs reveal cold summers of the past — potentially caused by volcanic eruptions

New frontiers in organic chemistry: Synthesis of a promising mushroom-derived compound

Biodegradable nylon precursor produced through artificial photosynthesis

GenEditScan: novel k-mer analysis tool based on next-generation sequencing for foreign DNA detection in genome-edited products

Survey: While most Americans use a device to monitor their heart, few share that data with their doctor

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

Empty headed? Largest study of its kind proves ‘bird brain’ is a misnomer

Wild baboons not capable of visual self-awareness when viewing their own reflection

$14 million supports work to diversify human genome research

New study uncovers key mechanism behind learning and memory

Seeing the unseen: New method reveals ’hyperaccessible’ window in freshly replicated DNA

Extreme climate pushed thousands of lakes in West Greenland ‘across a tipping point,’ study finds

[Press-News.org] NASA missions unmask magnetar eruptions in nearby galaxies