PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

USTC makes security analysis and improvement of quantum random number generation

2021-01-14
(Press-News.org) Recently, the research team led by academician GUO Guangcan from the University of Science and Technology of China of the Chinese Academy of Sciences has made security analysis and improvement of source independent quantum random number generators with imperfect devices. By studying the actual characteristics of the measurement devices of the source-independent quantum random number generation, the researchers pointed out that the security issues were caused by afterpulse, detection efficiency mismatching, poor sensitivity to photon number distribution in measurement devices, etc., and gave the corresponding solutions. The study was published in npj Quantum Information. The source-independent quantum random number generation protocol is a new quantum random number protocol proposed in 2016. This protocol can generate secure random numbers under the condition that the light source is completely untrusted by monitoring the error code of the mutual unbiased basis corresponding to the base of the random number generation. It can simultaneously meet the requirements of security and high rate of random number generator, and has a very high devices loss tolerance. However, the protocol has some security problems, such as the failure to consider the afterpulse problem of the detector, the mismatch of detection efficiency, the poor sensitivity of the detector to the distribution of light source and other characteristics, which impedes the application of this protocol. In this study, the researchers presented a detector model containing these actual parameters, and then evaluated the impact of these problems on actual security. At the same time, aiming at the afterpulse problem, they gave the security random number information upper bound with the existence of eavesdropping. To solve the problem of detection efficiency mismatch and poor detector sensitivity to the distribution of light source, the researchers proposed a method for monitoring the distribution of light source, and gave a bit rate formula based on the composable security with full consideration to the finite length effect. This study has quantitatively analyzed the security problem caused by imperfect measurement devices in source-independent quantum random number systems and given the corresponding solutions, which provides an important theoretical support for the realization of ultra-fast commercial source-independent quantum random number generator.

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Researchers link cellular transport pathway to aggressive brain cancer

Researchers link cellular transport pathway to aggressive brain cancer
2021-01-14
Researchers at McGill University have identified a new cellular pathway that limits the growth and spread of brain tumors by controlling the recycling of cell surface receptor proteins. The study, which will be published January 14 in the Journal of Cell Biology (JCB), suggests that the pathway, which involves a protein called Rab35, is defective in many patients with glioblastoma and that restoring Rab35's activity could be a new therapeutic strategy for this deadly form of brain cancer. Glioblastoma is the most aggressive type of brain cancer, and because it is largely untreatable, the average patient dies within 14 months of diagnosis. Like in other cancers, the proliferation and spread of glioblastoma cells depends on various receptor proteins on the outside of the cell. The ...

New algorithm mimics electrosensing in fish

New algorithm mimics electrosensing in fish
2021-01-14
While humans may struggle to navigate a murky, turbid underwater environment, weakly electric fish can do so with ease. These aquatic animals are specially adapted to traverse obscured waters without relying on vision; instead, they sense their environment via electric fields. Now, researchers are attempting to adapt these electrosensing techniques to improve underwater robotics. Scientists have spent years studying how weakly electric fish--including the knife fish and elephantnose fish--utilize electricity for navigation. These fish have specialized electric organs that discharge small voltages into the surrounding water, creating their own personal electric fields. Nearby objects cause slight disruptions to these fields, which the fish detect with sensitive organs ...

A climate in crisis calls for investment in direct air capture, new research finds

A climate in crisis calls for investment in direct air capture, new research finds
2021-01-14
There is a growing consensus among scientists as well as national and local governments representing hundreds of millions of people, that humanity faces a climate crisis that demands a crisis response. New research from the University of California San Diego explores one possible mode of response: a massively funded program to deploy direct air capture (DAC) systems that remove CO2 directly from the ambient air and sequester it safely underground. The findings reveal such a program could reverse the rise in global temperature well before 2100, but only with immediate and sustained investments from governments and firms to scale up the new technology. Despite the enormous undertaking explored in the study, the research also reveals the need ...

New suspicious lesions on breast MRI in neoadjuvant therapy

New suspicious lesions on breast MRI in neoadjuvant therapy
2021-01-14
Leesburg, VA, January 14, 2021--According to ARRS' American Journal of Roentgenology (AJR), new suspicious findings occurred in 5.5% of breast MRI examinations performed to monitor response to neoadjuvant therapy; none of these new lesions were malignant. "Our findings suggest that new lesions that arise in the setting of neoadjuvant therapy are highly unlikely to represent a new site of malignancy, particularly if the index malignancy shows treatment response," wrote Donna A. Eckstein and colleagues in the department of radiology and biomedical imaging at the University of California, San Francisco. Based on a presentation at the ARRS 2019 Annual Meeting, Honolulu, ...

Giving the hydrogen economy an acid test

Giving the hydrogen economy an acid test
2021-01-14
Scientists at the University of Tsukuba show that using a layer of graphene just one atom thick improves the catalytic activity of nickel or copper when generating hydrogen gas, which may lead to cheaper fuel for zero-emission automobiles Tsukuba, Japan - A team of researchers led by the Institute of Applied Physics at the University of Tsukuba has demonstrated a method for producing acid-resistant catalysts by covering them with layers of graphene. They show that using few layers allows for greater proton penetration during a hydrogen evolution reaction, which is crucial for maximizing ...

Giant 2D atlas of the universe helps dark energy spectroscopic survey

Giant 2D atlas of the universe helps dark energy spectroscopic survey
2021-01-14
The Beijing-Arizona Sky Survey (BASS) team of National Astronomical Observatories of Chinese Academy of Sciences (NAOC) and their collaborators of the Dark Energy Spectroscopic Instrument (DESI) project released a giant 2D map of the universe, which paves the way for the upcoming new-generation dark energy spectroscopic survey. Modern astronomical observations reveal that the universe is expanding and appears to be accelerating. The power driving the expansion of the universe is called dark energy by astronomers. The dark energy is still a mystery and accounts for about 68% of the substance ...

Pillarene hybrid material shows enhanced tunable multicolor luminescence and sensing ability

Pillarene hybrid material shows enhanced tunable multicolor luminescence and sensing ability
2021-01-14
Organic luminescent materials have been highlighted as an exciting research topic owing to their prominent potentials in light-emitting diodes, fluorescent sensors, optoelectronic devices, in vivo imaging, anti-counterfeiting, data storage, and information encryption. However, applications of tunable fluorescent materials in the solid states have been largely hampered because these luminescent systems generally require time-consuming organic synthesis procedures and suffer from reduced photoluminescence (PL) owing to the notorious aggregation caused quenching. Aggregation-induced ...

Study the boundary between bulk, nano and molecule scale of gold plasmonic physics

2021-01-14
As an elementary type of collective excitation, plasmon has been found to dominate the optical properties of metals. The collective behavior of electrons in plasmons reflects the important difference between condensed matter and molecule-like ones. It is of great significance to study the evolution of plasmonic response and find out the boundary. Controversy exists on such interesting questions as the division between the nanoparticle and molecules, and the physics of mesoscopic and microscopic plasmonic evolution. A unified understanding covering the small and large size limit, namely macro / meso / micro scales with sufficiently atomic precision is thus required. Clusters, as the transition from atomic molecules to condensed matter, are the ideal candidate for studying the evolution ...

Temperature scanners of limited value in detecting Covid-19

2021-01-14
Making people stand in front of a scanner to have their body temperature read can result in a large number of false negatives, allowing people with Covid-19 to pass through airports and hospitals undetected. A new study argues that taking temperature readings of a person's fingertip and eye would give a significantly better and more reliable reading and help identify those with fever. The study, co-led by human physiologist and an expert in temperature regulation, Professor Mike Tipton, is published in Experimental Physiology. Professor Tipton, ...

Catalyticity of molybdenum-dinitrogen complexes in organic reactions

Catalyticity of molybdenum-dinitrogen complexes in organic reactions
2021-01-14
Dinitrogen (N2) fixation is considered as one of the most essential tasks in basic science, providing straightforward methods to produce ammonia and nitrogen-containing molecules. Exploring the reactivity of N2 units of transition metal-nitrogen complexes is of great significance and challenging in the chemistry. Since the first Ru-N2 complex was prepared in 1965, important progress has been made in the synthesis and reactivity of transition metal nitrogen complexes. In many cases, terminal end-on M-N2 complexes as the most prevalent bonding mode were proved ...

LAST 30 PRESS RELEASES:

AI and extended reality help to preserve built cultural heritage

A new way to trigger responses in the body

Teeth of babies of stressed mothers come out earlier, suggests study

Slimming with seeds: Cumin curry spice fights fat

Leak-proof gasket with functionalized boron nitride nanoflakes enhances performance and durability

Gallup and West Health unveil new state rankings of Americans’ healthcare experiences

Predicting disease outbreaks using social media 

Linearizing tactile sensing: A soft 3D lattice sensor for accurate human-machine interactions

Nearly half of Australian adults experienced childhood trauma, increasing mental illness risk by 50 percent

HKUMed finds depression doubles mortality rates and increases suicide risk 10-fold; timely treatment can reduce risk by up to 30%

HKU researchers develop innovative vascularized tumor model to advance cancer immunotherapy

Floating solar panels show promise, but environmental impacts vary by location, study finds

Molecule that could cause COVID clotting key to new treatments

Root canal treatment reduces heart disease and diabetes risk

The gold standard: Researchers end 20-year spin debate on gold surface with definitive, full-map quantum imaging

ECMWF and European Partners win prestigious HPCwire Award for "Best Use Of AI Methods for Augmenting HPC Applications” – for AI innovation in weather and climate

Unearthing the City of Seven Ravines

Ancient sediments reveal Earth’s hidden wildfire past

Child gun injury risk spikes when children leave school for the day

Pennington Biomedical’s Dr. Leanne Redman recruited to lead the Charles Perkins Centre at the University of Sydney

Social media sentiment can predict when people move during crises, improving humanitarian response

Through the wires: Technology developed by FAMU-FSU College of Engineering faculty mitigates flaws in superconducting wires

Climate resilience found in traditional Hawaiian fishponds

Wearable lets users control machines and robots while on the move

Pioneering clean hydrogen breakthrough: Dr. Muhammad Aziz to unveil multi-scale advances in chemical looping technology

Using robotic testing to spot overlooked sensory deficits in stroke survivors

Breakthrough material advances uranium extraction from seawater, paving the way for sustainable nuclear energy

Emerging pollutants threaten efficiency of wastewater treatment: New review highlights urgent research needs

ACP encourages all adults to receive the 2025-2026 influenza vaccine

Scientists document rise in temperature-related deaths in the US

[Press-News.org] USTC makes security analysis and improvement of quantum random number generation