PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Spreading the sound

Scientists at the University of Tsukuba study the motion of sound waves in glassy materials using a new theoretical model, and find that they can diffuse like fluids, which may lead to the design of more resilient touchscreens

2021-01-15
(Press-News.org) Tsukuba, Japan - A team of researchers lead by the University of Tsukuba have created a new theoretical model to understand the spread of vibrations through disordered materials, such as glass. They found that as the degree of disorder increased, sound waves traveled less and less like ballistic particles, and instead began diffusing incoherently. This work may lead to new heat- and shatter-resistant glass for smartphones and tablets.

Understanding the possible vibrational modes in a material is important for controlling its optical, thermal, and mechanical properties. The propagation of vibrations in the form of sound of a single frequency through amorphous materials can occur in a unified way, as if it was a particle. Scientists like to call these quasiparticles "phonons." However, this approximation can break down if the material is too disordered, which limits our ability to predict the strength of glass under a wide range of circumstances.

Now, a team of scientists led by the University of Tsukuba have developed a new theoretical framework that explains the observed vibrations in glass with better agreement with experimental data. They demonstrate that thinking about vibrations as individual phonons is only justified in the limit of long wavelengths. On shorter length scales, disorder leads to increased scattering and the sound waves lose coherence. "We call these excitations 'diffusions,' because they represent the incoherent diffusion of vibrations, as opposed to the directed motion of phonons," explains author Professor Tatsuya Mori. In fact, the equations for low frequencies start looking like those for hydrodynamics, which describe the behavior of fluids. The researchers compared the predictions of the model with data obtained from soda lime glass and showed that they proved a better fit compared with previously accepted equations.

"Our research supports the view that this phenomenon is not unique to acoustic phonons, but rather represents a general phenomenon that can occur with other kinds of excitations within disordered materials," co-authors Professor Alessio Zaccone, University of Cambridge and Professor Matteo Baggioli, Instituto de Fisica Teorica UAM-CSIC say. Future work may involve utilizing the effects of disorder in order to improve the durability of glass for smart devices. The work is published in The Journal of Chemical Physics as "Physics of phonon-polaritons in amorphous materials" (DOI:10.1063/5.0033371).

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

Scientists synthetize new material for high-performance supercapacitors

2021-01-15
Scientists of Tomsk Polytechnic University jointly with colleagues from the University of Lille (Lille, France) synthetized a new material based on reduced graphene oxide (rGO) for supercapacitors, energy storage devices. The rGO modification method with the use of organic molecules, derivatives of hypervalent iodine, allowed obtaining a material that stores 1.7 times more electrical energy. The research findings are published in Electrochimica Acta academic journal (IF: 6,215; Q1). Photo: modified rGO supercapacitor electrodes A supercapacitor is an electrochemical device for storage and release ...

IOF and IFCC review calls for harmonization of assays for reference bone turnover markers

2021-01-15
Bone turnover markers (BTMs) in blood and urine are useful tools in monitoring osteoporosis treatment effects and may be useful for improving patient adherence. In 2011, a Joint Committee on Bone Metabolism of the International Osteoporosis Foundation (IOF) and the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) designated Procollagen type I N-propeptide (PINP) and the C-terminal telopeptide of type I collagen (β-CTX) in blood as reference bone turnover markers for bone formation and bone resorption, respectively, in osteoporosis. However, the effective clinical implementation of ...

Climate impacts on health and urban areas: Heatwaves and death rate

2021-01-15
Over the last half-century, the probability of heat extreme events has changed by orders of magnitude in almost every region of the world, with occurrences that are now up to a hundred times more in respect to a century ago. Of all-natural disasters, extreme high temperature events are the main cause of weather-related mortality and they are also expected to be the main factor responsible for additional deaths due to climate change in the coming years. In cities, the heat island effect creates higher temperatures than in vegetated areas. But conditions within urban areas are not equal in all their parts - either due to their physical form or to the specific needs or vulnerabilities of inhabitants - therefore not all districts ...

Hubble pinpoints supernova blast

Hubble pinpoints supernova blast
2021-01-15
The NASA/ESA Hubble Space Telescope has observed the supernova remnant named 1E 0102.2-7219. Researchers are using Hubble's imagery of the remnant object to wind back the clock on the expanding remains of this exploded star in the hope of understanding the supernova event that caused it 1700 years ago. The featured star that exploded long ago belongs to the Small Magellanic Cloud, a satellite galaxy of our Milky Way located roughly 200 000 light-years away. The doomed star left behind an expanding, gaseous corpse -- a supernova remnant -- known as 1E 0102.2-7219. Because the gaseous knots in this supernova ...

Designer cytokine makes paralyzed mice walk again

2021-01-15
The researchers published their report in the Journal Nature Communications from 15 January 2021. When the communication breaks down Spinal cord injuries caused by sports or traffic accidents often result in permanent disabilities such as paraplegia. This is caused by damage to nerve fibers, so-called axons, which carry information from the brain to the muscles and back from the skin and muscles. If these fibers are damaged due to injury or illness, this communication is interrupted. Since severed axons in the spinal cord can't grow back, the patients suffer from paralysis and numbness for life. To date, there are still no treatment options that could restore the lost functions ...

Intertropical Convergence Zone limits climate predictions in the tropical Atlantic

2021-01-15
El Niño or correctly El Niño - Southern Oscillation (ENSO) is the strongest natural climate fluctuation on time scales of a few years. Through ocean and atmosphere interactions, El Niño (Spanish for The Christ Child) events cause significant warming of the eastern Pacific, accompanied by catastrophic rainfall over South America and droughts in the Indo-Pacific region. Powerful events have global effects that reach even into the extra-tropics. There is also an El Niño variant in the Atlantic, called the Atlantic Niño, which, for example, has effects on rainfall in West Africa as well as the development of tropical cyclones over the eastern tropical Atlantic. A better understanding of the poorly investigated little ...

CHOP researchers Find NTRK fusions more common than expected in pediatric tumors

2021-01-15
Philadelphia, January 14, 2021--In a large study of pediatric cancer patients, researchers from Children's Hospital of Philadelphia (CHOP) have analyzed the frequency, fusion partners, and clinical outcome of neurotrophic tyrosine receptor kinase (NTRK) fusions, which are clinical biomarkers that identify patients suitable for treatment with FDA-approved TRK inhibitors. The researchers found that NTRK fusions are more common in pediatric tumors and also involve a wider range of tumors than adult cancers, information that could help prioritize screening for NTRK fusions in pediatric cancer patients who might benefit from treatment with TRK inhibitors. The ...

Helium nuclei at the surface of heavy nuclei discovered

2021-01-15
The experiment was performed at the Research Center for Nuclear Physics (RCNP) in Osaka. The research team, lead by scientists from TU Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research, and from the RIKEN Nishina Center for Accelerator-Based Science, discuss the new findings in a contribution to the latest issue of the journal "Science". The strong interaction binds neutrons and protons together to atomic nuclei. The knowledge of properties of nuclei and their theoretical description is basis for our understanding of nuclear matter and the development of the universe. Laboratory-based studies of reactions between atomic nuclei provide means to explore nuclear properties. These experiments ...

ADA lowers target HbA1C levels for children with type-1 diabetes

2021-01-15
Diabetes is characterized by elevated levels of sugar or glucose (hyperglycemia) in the blood. This occurs due to the lack of the hormone insulin in type 1 diabetes, and to reduced insulin levels in combination with insulin resistance in type 2 diabetes. A recent review of data supports stricter control of hemoglobin A1C levels (HbA1C) among pediatric patients with T1D. This review was led by Dr. Maria J. Redondo, pediatric endocrinologist at Texas Children's Hospital and professor at Baylor College of Medicine, in collaboration with Dr. Sarah Lyons, pediatric endocrinologist at Texas Children's and assistant professor at Baylor College of Medicine, ...

Towards applications: ultra-low-loss on-chip zero-index materials

Towards applications: ultra-low-loss on-chip zero-index materials
2021-01-15
A refractive index of zero induces a wave vector with zero amplitude and undefined direction. Therefore, light propagating inside a zero-index medium does not accumulate any spatial phase advance, resulting in perfect spatial coherence. Such coherence brings several potential applications, including arbitrarily shaped waveguides, phase-mismatch-free nonlinear propagation, large-area single-mode lasers, and extended super radiance. A promising platform to achieve these applications is an integrated Dirac-cone material that features an impedance-matched zero index. However, although this platform eliminates ohmic losses via its purely dielectric structure, it still entails out-of-plane radiation loss (about 1 dB/μm), restricting the applications to a small scale. In ...

LAST 30 PRESS RELEASES:

Scientists target ‘molecular machine’ in the war against antimicrobial resistance

Extending classical CNOP method for deep-learning atmospheric and oceanic forecasting

Aston University research: Parents should encourage structure and independence around food to support children’s healthy eating

Thunderstorms are a major driver of tree death in tropical forests

Danforth Plant Science Center adds two new faculty members

Robotic eyes mimic human vision for superfast response to extreme lighting

Racial inequities and access to COVID-19 treatment

Residential segregation and lung cancer risk in African American adults

Scientists wipe out aggressive brain cancer tumors by targeting cellular ‘motors’

Capturability distinction analysis of continuous and pulsed guidance laws

CHEST expands Bridging Specialties Initiative to include NTM disease and bronchiectasis on World Bronchiectasis Day

Exposure to air pollution may cause heart damage

SwRI, UTSA selected by NASA to test electrolyzer technology aboard parabolic flight

Prebiotics might be a factor in preventing or treating issues caused by low brain GABA

Youngest in class at higher risk of mental health problems

American Heart Association announces new volunteer leaders for 2025-26

Gut microbiota analysis can help catch gestational diabetes

FAU’s Paulina DeVito awarded prestigious NSF Graduate Research Fellowship

Champions for change – Paid time off initiative just made clinical trials participation easier

Fentanyl detection through packaging

Prof. Eran Meshorer elected to EMBO for pioneering work in epigenetics

New 3D glacier visualizations provide insights into a hotter Earth

Creativity across disciplines

Consequences of low Antarctic sea ice

Hear here: How loudness and acoustic cues help us judge where a speaker is facing

A unique method of rare-earth recycling can strengthen the raw material independence of Europe and America

Epilepsy self-management program shows promise to control seizures, improve mood and quality of life

Fat may play an important role in brain metabolism

New study finds no lasting impact of pandemic pet ownership on human well-being

New insights on genetic damage of some chemotherapies could guide future treatments with less harmful side effects

[Press-News.org] Spreading the sound
Scientists at the University of Tsukuba study the motion of sound waves in glassy materials using a new theoretical model, and find that they can diffuse like fluids, which may lead to the design of more resilient touchscreens