PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study: X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle

Researchers say they may have found proof of theorized axions, and possibly dark matter, around group of neutron stars

Study: X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle
2021-01-15
(Press-News.org) A new study, led by a theoretical physicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.

First theorized in the 1970s as part of a solution to a fundamental particle physics problem, axions are expected to be produced at the core of stars, and to convert into particles of light, called photons, in the presence of a magnetic field.

Axions may also make up dark matter - the mysterious stuff that accounts for an estimated 85 percent of the total mass of the universe, yet we have so far only seen its gravitational effects on ordinary matter. Even if the X-ray excess turns out not to be axions or dark matter, it could still reveal new physics.

A collection of neutron stars, known as the Magnificent 7, provided an excellent test bed for the possible presence of axions, as these stars possess powerful magnetic fields, are relatively nearby - within hundreds of light-years - and were only expected to produce low-energy X-rays and ultraviolet light.

"They are known to be very 'boring,'" and in this case it's a good thing, said Benjamin Safdi, a Divisional Fellow in the Berkeley Lab Physics Division theory group who led a study, published Jan. 12 in the journal Physical Review Letters, detailing the axion explanation for the excess. Christopher Dessert, a Berkeley Lab Physics Division affiliate, contributed heavily to the study, which also had participation by researchers at UC Berkeley, the University of Michigan, Princeton University, and the University of Minnesota.

If the neutron stars were of a type known as pulsars, they would have an active surface giving off radiation at different wavelengths. This radiation would show up across the electromagnetic spectrum, Safdi noted, and could drown out this X-ray signature that the researchers had found, or would produce radio-frequency signals. But the Magnificent 7 are not pulsars, and no such radio signal was detected. Other common astrophysical explanations don't seem to hold up to the observations either, Safdi said.

If the X-ray excess detected around the Magnificent 7 is generated from an object or objects hiding out behind the neutron stars, that likely would have shown up in the datasets that researchers are using from two space satellites: the European Space Agency's XMM-Newton and NASA's Chandra X-ray telescopes.

Safdi and collaborators say it's still quite possible that a new, non-axion explanation arises to account for the observed X-ray excess, though they remain hopeful that such an explanation will lie outside of the Standard Model of particle physics, and that new ground- and space-based experiments will confirm the origin of the high-energy X-ray signal.

"We are pretty confident this excess exists, and very confident there's something new among this excess," Safdi said. "If we were 100% sure that what we are seeing is a new particle, that would be huge. That would be revolutionary in physics." Even if the discovery turns out not to be associated with a new particle or dark matter, he said, "It would tell us so much more about our universe, and there would be a lot to learn."

Raymond Co, a University of Minnesota postdoctoral researcher who collaborated in the study, said, "We're not claiming that we've made the discovery of the axion yet, but we're saying that the extra X-ray photons can be explained by axions. It is an exciting discovery of the excess in the X-ray photons, and it's an exciting possibility that's already consistent with our interpretation of axions."

If axions exist, they would be expected to behave much like neutrinos in a star, as both would have very slight masses and interact only very rarely and weakly with other matter. They could be produced in abundance in the interior of stars. Uncharged particles called neutrons move around within neutron stars, occasionally interacting by scattering off of one another and releasing a neutrino or possibly an axion. The neutrino-emitting process is the dominant way that neutron stars cool over time.

Like neutrinos, the axions would be able to travel outside of the star. The incredibly strong magnetic field surrounding the Magnificent 7 stars - billions of times stronger than magnetic fields that can be produced on Earth - could cause exiting axions to convert into light.

Neutron stars are incredibly exotic objects, and Safdi noted that a lot of modeling, data analysis, and theoretical work went into the latest study. Researchers have heavily used a bank of supercomputers known as the Lawrencium Cluster at Berkeley Lab in the latest work.

Some of this work had been conducted at the University of Michigan, where Safdi previously worked. "Without the high-performance supercomputing work at Michigan and Berkeley, none of this would have been possible," he said.

"There is a lot of data processing and data analysis that went into this. You have to model the interior of a neutron star in order to predict how many axions should be produced inside of that star."

Safdi noted that as a next step in this research, white dwarf stars would be a prime place to search for axions because they also have very strong magnetic fields, and are expected to be "X-ray-free environments."

"This starts to be pretty compelling that this is something beyond the Standard Model if we see an X-ray excess there, too," he said.

Researchers could also enlist another X-ray space telescope, called NuStar, to help solve the X-ray excess mystery.

Safdi said he is also excited about ground-based experiments such as CAST at CERN, which operates as a solar telescope to detect axions converted into X-rays by a strong magnet, and ALPS II in Germany, which would use a powerful magnetic field to cause axions to transform into particles of light on one side of a barrier as laser light strikes the other side of the barrier.

Axions have received more attention as a succession of experiments has failed to turn up signs of the WIMP (weakly interacting massive particle), another promising dark matter candidate. And the axion picture is not so straightforward - it could actually be a family album.

There could be hundreds of axion-like particles, or ALPs, that make up dark matter, and string theory - a candidate theory for describing the forces of the universe - holds open the possible existence of many types of ALPs.

INFORMATION:

The study was supported by the U.S. Department of Energy Office of Science Early Career Research Program; Advanced Research Computing and the Leinweber Graduate Fellowship at the University of Michigan, Ann Arbor; the National Science Foundation; the Mainz Institute for Theoretical Physics (MITP) of the Cluster of Excellence PRISMA+; the Munich Institute for Astro- and Particle Physics (MIAPP) of the DFG Excellence Cluster Origins; and the CERN Theory department.

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


[Attachments] See images for this press release:
Study: X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle

ELSE PRESS RELEASES FROM THIS DATE:

Simulating evolution to understand a hidden switch

Simulating evolution to understand a hidden switch
2021-01-15
Computer simulations of cells evolving over tens of thousands of generations reveal why some organisms retain a disused switch mechanism that turns on under severe stress, changing some of their characteristics. Maintaining this "hidden" switch is one means for organisms to maintain a high degree of gene expression stability under normal conditions. Tomato hornworm larvae are green in warmer regions, making camouflage easier, but black in cooler temperatures so that they can absorb more sunlight. This phenomenon, found in some organisms, is called phenotypic switching. Normally hidden, this switching is activated in response to dangerous genetic or environmental changes. Scientists have typically studied this ...

Scientists' discovery is paving the way for novel ultrafast quantum computers

Scientists discovery is paving the way for novel ultrafast quantum computers
2021-01-15
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal Optics Communications. While in ordinary computers, the units of information are binary digits or bits, in quantum computers the units are quantum bits or qubits. In an ordinary computer, information is mostly ...

Stuck in a rut: Ocean acidification locks algal communities in a simplified state

Stuck in a rut: Ocean acidification locks algal communities in a simplified state
2021-01-15
Tsukuba, Japan - Out with the old, in with the new, as the New Year's saying goes, but not where the marine environment is concerned. Researchers from Japan have discovered that ocean acidification keeps algal communities locked in a simplified state of low biodiversity. In a study published on 11th January 2021 in Global Change Biology, researchers from the University of Tsukuba have revealed that as oceanic carbon dioxide levels rise, the biodiversity and ecological complexity of marine algal communities decline. Ocean acidification is the continuing increase in the acidity of the Earth's oceans, caused by the absorption of atmospheric carbon dioxide (CO2). ...

Revisiting the Global Workspace orchestrating the hierarchical organisation of the human brain

2021-01-15
The celebrations in the 250th anniversary of the birth of Ludwig van Beethoven would not be the same without Herbert von Karajan's brilliant performances conducting Beethoven's memorable symphonies. The execution of any musical symphony is a hugely difficult task, demanding very significant skills on the part of each individual musician - but perhaps the most difficult task lies with the conductor who has to orchestrate the musicians into making the music cohesively come alive and speak to our deepest emotions. In many ways the human brain is like an orchestra, where different regions perform very different types of processing, such ...

Increased risk of Parkinson's disease in patients with schizophrenia

2021-01-15
A new study conducted at the University of Turku, Finland, shows that patients with a schizophrenia spectrum disorder have an increased risk of Parkinson's disease later in life. The increased risk may be due to alterations in the brain's dopamine system caused by dopamine receptor antagonists or neurobiological effects of schizophrenia. The record-based case-control study was carried out at the University of Turku in collaboration with the University of Eastern Finland. The study examined the occurrences of previously diagnosed psychotic disorders and schizophrenia in over 25,000 Finnish Parkinson's disease (PD) patients ...

Spreading the sound

2021-01-15
Tsukuba, Japan - A team of researchers lead by the University of Tsukuba have created a new theoretical model to understand the spread of vibrations through disordered materials, such as glass. They found that as the degree of disorder increased, sound waves traveled less and less like ballistic particles, and instead began diffusing incoherently. This work may lead to new heat- and shatter-resistant glass for smartphones and tablets. Understanding the possible vibrational modes in a material is important for controlling its optical, thermal, and mechanical properties. The propagation of vibrations in the form of sound of a single ...

Scientists synthetize new material for high-performance supercapacitors

2021-01-15
Scientists of Tomsk Polytechnic University jointly with colleagues from the University of Lille (Lille, France) synthetized a new material based on reduced graphene oxide (rGO) for supercapacitors, energy storage devices. The rGO modification method with the use of organic molecules, derivatives of hypervalent iodine, allowed obtaining a material that stores 1.7 times more electrical energy. The research findings are published in Electrochimica Acta academic journal (IF: 6,215; Q1). Photo: modified rGO supercapacitor electrodes A supercapacitor is an electrochemical device for storage and release ...

IOF and IFCC review calls for harmonization of assays for reference bone turnover markers

2021-01-15
Bone turnover markers (BTMs) in blood and urine are useful tools in monitoring osteoporosis treatment effects and may be useful for improving patient adherence. In 2011, a Joint Committee on Bone Metabolism of the International Osteoporosis Foundation (IOF) and the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) designated Procollagen type I N-propeptide (PINP) and the C-terminal telopeptide of type I collagen (β-CTX) in blood as reference bone turnover markers for bone formation and bone resorption, respectively, in osteoporosis. However, the effective clinical implementation of ...

Climate impacts on health and urban areas: Heatwaves and death rate

2021-01-15
Over the last half-century, the probability of heat extreme events has changed by orders of magnitude in almost every region of the world, with occurrences that are now up to a hundred times more in respect to a century ago. Of all-natural disasters, extreme high temperature events are the main cause of weather-related mortality and they are also expected to be the main factor responsible for additional deaths due to climate change in the coming years. In cities, the heat island effect creates higher temperatures than in vegetated areas. But conditions within urban areas are not equal in all their parts - either due to their physical form or to the specific needs or vulnerabilities of inhabitants - therefore not all districts ...

Hubble pinpoints supernova blast

Hubble pinpoints supernova blast
2021-01-15
The NASA/ESA Hubble Space Telescope has observed the supernova remnant named 1E 0102.2-7219. Researchers are using Hubble's imagery of the remnant object to wind back the clock on the expanding remains of this exploded star in the hope of understanding the supernova event that caused it 1700 years ago. The featured star that exploded long ago belongs to the Small Magellanic Cloud, a satellite galaxy of our Milky Way located roughly 200 000 light-years away. The doomed star left behind an expanding, gaseous corpse -- a supernova remnant -- known as 1E 0102.2-7219. Because the gaseous knots in this supernova ...

LAST 30 PRESS RELEASES:

Tech Extension Co. and Tech Extension Taiwan to build next-generation 3D integration manufacturing lines using Tokyo Tech's BBCube Technology

Atomic nucleus excited with laser: a breakthrough after decades

Losing keys and everyday items ‘not always sign of poor memory’

People with opioid use disorder less likely to receive palliative care at end of life

New Durham University study reveals mystery of decaying exoplanet orbits

The threat of polio paralysis may have disappeared, but enterovirus paralysis is just as dangerous and surveillance and testing systems are desperately needed

Study shows ChatGPT failed when challenging ESCMID guideline for treating brain abscesses

Study finds resistance to critically important antibiotics in uncooked meat sold for human and animal consumption

Global cervical cancer vaccine roll-out shows it to be very effective in reducing cervical cancer and other HPV-related disease, but huge variations between countries in coverage

Negativity about vaccines surged on Twitter after COVID-19 jabs become available

Global measles cases almost double in a year

Lower dose of mpox vaccine is safe and generates six-week antibody response equivalent to standard regimen

Personalised “cocktails” of antibiotics, probiotics and prebiotics hold great promise in treating a common form of irritable bowel syndrome, pilot study finds

Experts developing immune-enhancing therapies to target tuberculosis

Making transfusion-transmitted malaria in Europe a thing of the past

Experts developing way to harness Nobel Prize winning CRISPR technology to deal with antimicrobial resistance (AMR)

CRISPR is promising to tackle antimicrobial resistance, but remember bacteria can fight back

Ancient Maya blessed their ballcourts

Curran named Fellow of SAE, ASME

Computer scientists unveil novel attacks on cybersecurity

Florida International University graduate student selected for inaugural IDEA2 public policy fellowship

Gene linked to epilepsy, autism decoded in new study

OHSU study finds big jump in addiction treatment at community health clinics

Location, location, location

Getting dynamic information from static snapshots

Food insecurity is significant among inhabitants of the region affected by the Belo Monte dam in Brazil

The Society of Thoracic Surgeons launches new valve surgery risk calculators

Component of keto diet plus immunotherapy may reduce prostate cancer

New circuit boards can be repeatedly recycled

Blood test finds knee osteoarthritis up to eight years before it appears on x-rays

[Press-News.org] Study: X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle
Researchers say they may have found proof of theorized axions, and possibly dark matter, around group of neutron stars