PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Increased blood flow during sleep tied to critical brain function

2021-01-19
(Press-News.org) Our brains experience significant changes in blood flow and neural activity during sleep, according to Penn State researchers. Such changes may help to clean out metabolic brain waste that builds up during the day.

"We studied the sleep patterns of mice during both rapid eye movement and non-rapid eye movement sleep stages, as well as in different alertness states," said Patrick Drew, Huck Distinguished Associate Professor of Engineering Science and Mechanics, Neurosurgery and Biomedical Engineering.

Mice were chosen for the study because of their brains' remarkable similarity with human brains, said the researchers.

In both mice and humans, non-REM sleep is the first stage of sleep that occurs when a person falls to sleep for about the first hour or two, according to Drew, while REM sleep is characterized by rapid eye movements and vivid dreams.

During the different sleep and alertness states, the researchers monitored the neural activity, blood vessel dilation, electromyography activity and whisker and body movements of the mice.

Mice move their whiskers during rapid eye movement (REM) sleep instead of moving their eyes, and also sleep with their eyelids open.

"The mice naturally fall asleep very quickly even while their heads were restrained to allow for neural imaging," Drew said. "We used machine learning algorithms to continually monitor the sleep stages the animals were in, and also when they were awake, as they greatly impact blood flow fluctuations."

Using optical imaging and two-photon microscopy, report in eLIfe that the researchers found that brain arterioles, or small branches of arteries, were more much more dilated when the mice were in non-REM sleep than when they were awake. During REM sleep, the dilation was even larger than during non-REM sleep.

Such blood flow changes indicate the brain is healthy, according to Drew.

"The dilated blood vessels and increased blood flow may help the brain move waste products out of the brain," he said.

This is why disrupted sleep is associated with diseases that afflict the brain, such as Alzheimer's and dementia.

"The working hypothesis is that with diseases affecting the brain, the body fails to clear the neural waste fluid due to lack of sleep," Drew said. "And decreases in cerebral blood flow?often proceed degenerative brain illnesses."

Further, insomnia could negatively contribute to mental health conditions like anxiety and depression, as the brain is unable to clear out the waste fluid when sleep is disrupted for an extended period of time.

"The knowledge of brain processes gained through this study is basic, but it could be applied to a number of clinical studies in the future," Drew said.

INFORMATION:

In addition to Drew, Penn State researchers include Elizabeth Proctor, assistant professor of neurosurgery, pharmacology, biomedical engineering and engineering science and mechanics; Kevin Turner, doctoral candidate in bioengineering; and Kyle Gheres, doctoral candidate in molecular, cellular and integrative biosciences.

The National Institutes of Health supported this study.



ELSE PRESS RELEASES FROM THIS DATE:

RUDN University and RLT scientists: Light, magnetic field, and ultrasound could help fight COVID-19

RUDN University and RLT scientists: Light, magnetic field, and ultrasound could help fight COVID-19
2021-01-19
A team of researchers from RUDN University and RLT suggested restoring normal levels of lymphocytes in patients with COVID-19 and other viral diseases by subjecting them to the combined influence of light, magnetic field, and ultrasound. The results of the study were published in the Journal of Photochemistry and Photobiology B: Biology. Some COVID-19 patients are asymptomatic, while others suffer from complications. To effectively fight coronavirus with drugs and therapeutic methods, scientists and medics have to find out what causes these differences in the course of the disease. A team of scientists from RUDN University together with their colleagues from the international company Radiant Life Technologies (RLT) suggested that the reason might ...

A mathematical study describes how metastasis starts

A mathematical study describes how metastasis starts
2021-01-19
A scientific study carried out by the Universidad Carlos III de Madrid (UC3M) and the Universidad Complutense de Madrid (UCM) has produced a mathematical description of the way in which a tumor invades the epithelial cells and automatically quantifies the progression of the tumor and the remaining cell islands after its progression. The model developed by these researchers could be used to better understand the biophysical characteristics of the cells involved when developing new treatments for wound healing, organ regeneration, or cancer progression. This research analyses the collective ...

Who's writing open access articles?

2021-01-19
An Academic Analytics Research Center (AARC) study has found greater rates of authorship of open access (OA) research articles among scholars at more prestigious institutions with greater access to resources and job security. "The open access publishing model is growing, and open access successfully democratizes the results of research projects, but it's clear now that some scholars are more likely to be represented in the open access literature" said AARC director and lead author of the study Anthony Olejniczak, Ph.D. The researchers analyzed characteristics of 182,320 open access authors at American research universities from 2014 through 2018. The study ...

Gene-editing 'scissor' tool may also be a 'dimmer switch'

Gene-editing scissor tool may also be a dimmer switch
2021-01-19
In a series of experiments with laboratory-cultured bacteria, Johns Hopkins scientists have found evidence that there is a second role for the widely used gene-cutting system CRISPR-Cas9 -- as a genetic dimmer switch for CRISPR-Cas9 genes. Its role of dialing down or dimming CRISPR-Cas9 activity may help scientists develop new ways to genetically engineer cells for research purposes. A summary of the findings was published Jan. 8 in Cell. First identified in the genome of gut bacteria in 1987, CRISPR-Cas9 is a naturally occurring but unusual group of genes with a potential for cutting DNA sequences in ...

Nonsurgical treatment for cerebral infarction using wearable wireless ultrasound devices

Nonsurgical treatment for cerebral infarction using wearable wireless ultrasound devices
2021-01-19
Cerebral infarction, commonly known as ischemic stroke, has a high mortality rate and causes severe damage to nervous cells in the brain owing to the loss of oxygen, which results in limiting body movements. Several technologies, including physiotherapy and brain stimulation techniques, are being developed and tested for the rehabilitation of brain nervous cells damaged by a stroke. In particular, low-intensity focused ultrasound is expected to be effective for rehabilitating neurological diseases such as stroke, as it can excite or inhibit nerve cells by delivering mechanical energy with high precision at the desired position, while ultrasound is penetrating the cranium without requiring a surgical operation. Korea Institute of Science and Technology (KIST) announced that the research ...

One-dimensional quantum nanowires fertile ground for Majorana zero modes

One-dimensional quantum nanowires fertile ground for Majorana zero modes
2021-01-19
Why is studying spin properties of one-dimensional quantum nanowires important? Quantum nanowires-which have length but no width or height-provide a unique environment for the formation and detection of a quasiparticle known as a Majorana zero mode. A new UNSW-led study overcomes previous difficulty detecting the Majorana zero mode, and produces a significant improvement in device reproducibility. Potential applications for Majorana zero modes include fault-resistant topological quantum computers, and topological superconductivity. MAJORANA FERMIONS IN 1D WIRES A Majorana fermion is a composite particle that is its own antiparticle. Antimatter explainer: Every fundamental particle has a corresponding antimatter particle, with ...

A biological strategy reveals how efficient brain circuitry develops spontaneously

A biological strategy reveals how efficient brain circuitry develops spontaneously
2021-01-19
A KAIST team's mathematical modelling shows that the topographic tiling of cortical maps originates from bottom-up projections from the periphery. Researchers have explained how the regularly structured topographic maps in the visual cortex of the brain could arise spontaneously to efficiently process visual information. This research provides a new framework for understanding functional architectures in the visual cortex during early developmental stages. A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has demonstrated that the orthogonal organization of retinal mosaics in the periphery is mirrored onto the primary visual cortex and initiates ...

Semiconductor chip that detects exhaled gas with high sensitivity at room temperature

Semiconductor chip that detects exhaled gas with high sensitivity at room temperature
2021-01-19
Overview: Third-year doctoral student Toshiaki Takahashi, associate professor Kazuhiro Takahashi, and their research team from the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology developed a testing chip using semiconductor micro-machining that can detect volatile gasses in exhaled breath in ppm concentrations at room temperature. A polymer that expands and contracts when gas is absorbed is formed on a flexibly deformable nanosheet, and the amount of deformation that occurs when a target gas is absorbed is measured, allowing gas to be detected at high sensitivity. ...

Bio-inspired: How lobsters can help make stronger 3D printed concrete

2021-01-19
New research shows that patterns inspired by lobster shells can make 3D printed concrete stronger, to support more complex and creative architectural structures. Digital manufacturing technologies like 3D concrete printing (3DCP) have immense potential to save time, effort and material in construction. They also promise to push the boundaries of architectural innovation, yet technical challenges remain in making 3D printed concrete strong enough for use in more free-form structures. WATCH AND EMBED THE VIDEO: https://youtu.be/mpPAPlst42o In a new experimental study, researchers at RMIT University ...

Optical data transmission speed increased by a factor of at least 10,000

Optical data transmission speed increased by a factor of at least 10,000
2021-01-19
Pulsed lasers repeatedly emit light for a short period of time as if blinking. They have the advantage of focusing more energy than a continuous wave laser, whose intensity is kept unchanged over time. If digital signals are loaded in a pulsed laser, each pulse can encode one bit of data. In this respect, the higher the repetition rate, the more the amount of data that can be transmitted. However, conventional optical-fiber-based pulsed lasers have typically had a limitation in increasing the number of pulses per second above the MHz level. The Korea Institute of Science and Technology (KIST) announced that the research ...

LAST 30 PRESS RELEASES:

Scientists trace microplastics in fertilizer from fields to the beach

The Lancet Obstetrics, Gynecology, & Women’s Health: Taking paracetamol during pregnancy does not increase risk of autism, ADHD or intellectual disabilities, confirms new gold-standard evidence review

Taking paracetamol during pregnancy does not increase risk of autism, ADHD or intellectual disabilities

Harm reduction vending machines in New York State expand access to overdose treatment and drug test strips, UB studies confirm

University of Phoenix releases white paper on Credit for Prior Learning as a catalyst for internal mobility and retention

Canada losing track of salmon health as climate and industrial threats mount

Molecular sieve-confined Pt-FeOx catalysts achieve highly efficient reversible hydrogen cycle of methylcyclohexane-toluene

Investment in farm productivity tools key to reducing greenhouse gas

New review highlights electrochemical pathways to recover uranium from wastewater and seawater

Hidden pollutants in shale gas development raise environmental concerns, new review finds

Discarded cigarette butts transformed into high performance energy storage materials

Researchers highlight role of alternative RNA splicing in schizophrenia

NTU Singapore scientists find new way to disarm antibiotic-resistant bacteria and restore healing in chronic wounds

Research suggests nationwide racial bias in media reporting on gun violence

Revealing the cell’s nanocourier at work

Health impacts of nursing home staffing

Public views about opioid overdose and people with opioid use disorder

Age-related changes in sperm DNA may play a role in autism risk

Ambitious model fails to explain near-death experiences, experts say

Multifaceted effects of inward foreign direct investment on new venture creation

Exploring mutations that spontaneously switch on a key brain cell receptor

Two-step genome editing enables the creation of full-length humanized mouse models

Pusan National University researchers develop light-activated tissue adhesive patch for rapid, watertight neurosurgical sealing

Study finds so-called super agers tend to have at least two key genetic advantages

Brain stimulation device cleared for ADHD in the US is overall safe but ineffective

Scientists discover natural ‘brake’ that could stop harmful inflammation

Tougher solid electrolyte advances long-sought lithium metal batteries

Experts provide policy roadmap to reduce dementia risk

New 3D imaging system could address limitations of MRI, CT and ultrasound

First-in-human drug trial lowers high blood fats

[Press-News.org] Increased blood flow during sleep tied to critical brain function