PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Gene-editing 'scissor' tool may also be a 'dimmer switch'

CRISPR technology shown to 'dial down' gene activity in bacteria

Gene-editing 'scissor' tool may also be a 'dimmer switch'
2021-01-19
(Press-News.org) In a series of experiments with laboratory-cultured bacteria, Johns Hopkins scientists have found evidence that there is a second role for the widely used gene-cutting system CRISPR-Cas9 -- as a genetic dimmer switch for CRISPR-Cas9 genes. Its role of dialing down or dimming CRISPR-Cas9 activity may help scientists develop new ways to genetically engineer cells for research purposes.

A summary of the findings was published Jan. 8 in Cell.

First identified in the genome of gut bacteria in 1987, CRISPR-Cas9 is a naturally occurring but unusual group of genes with a potential for cutting DNA sequences in other types of cells that was realized 25 years later. Its value in genetic engineering -- programmable gene alteration in living cells, including human cells -- was rapidly appreciated, and its widespread use as a genome "editor" in thousands of laboratories worldwide was recognized in the awarding of the Nobel Prize in Chemistry last year to its American and French co-developers.

CRISPR stands for clustered, regularly interspaced short palindromic repeats. Cas9, which refers to CRISPR-associated protein 9, is the name of the enzyme that makes the DNA slice. Bacteria naturally use CRISPR-Cas9 to cut viral or other potentially harmful DNA and disable the threat, says Joshua Modell, Ph.D., assistant professor of molecular biology and genetics at the Johns Hopkins University School of Medicine. In this role, Modell says, "CRISPR is not only an immune system, it's an adaptive immune system -- one that can remember threats it has previously encountered by holding onto a short piece of their DNA, which is akin to a mug shot." These mug shots are then copied into "guide RNAs" that tell Cas9 what to cut.

Scientists have long worked to unravel the precise steps of CRISPR-Cas9's mechanism and how its activity in bacteria is dialed up or down. Looking for genes that ignite or inhibit the CRISPR-Cas9 gene-cutting system for the common, strep-throat causing bacterium Streptococcus pyogenes, the Johns Hopkins scientists found a clue regarding how that aspect of the system works.

Specifically, the scientists found a gene in the CRISPR-Cas9 system that, when deactivated, led to a dramatic increase in the activity of the system in bacteria. The product of this gene appeared to re-program Cas9 to act as a brake, rather than as a "scissor," to dial down the CRISPR system.

"From an immunity perspective, bacteria need to ramp up CRISPR-Cas9 activity to identify and rid the cell of threats, but they also need to dial it down to avoid autoimmunity -- when the immune system mistakenly attacks components of the bacteria themselves," says graduate student Rachael Workman, a bacteriologist working in Modell's laboratory.

To further nail down the particulars of the "brake," the team's next step was to better understand the product of the deactivated gene (tracrRNA). RNA is a genetic cousin to DNA and is vital to carrying out DNA "instructions" for making proteins. TracrRNAs belong to a unique family of RNAs that do not make proteins. Instead, they act as a kind of scaffold that allows the Cas9 enzyme to carry the guide RNA that contains the mug shot and cut matching DNA sequences in invading viruses.

TracrRNA comes in two sizes: long and short. Most of the modern gene-cutting CRISPR-Cas9 tools use the short form. However, the research team found that the deactivated gene product was the long form of tracrRNA, the function of which has been entirely unknown.

The long and short forms of tracrRNA are similar in structure and have in common the ability to bind to Cas9. The short form tracrRNA also binds to the guide RNA. However, the long form tracrRNA doesn't need to bind to the guide RNA, because it contains a segment that mimics the guide RNA. "Essentially, long form tracrRNAs have combined the function of the short form tracrRNA and guide RNA," says Modell.

In addition, the researchers found that while guide RNAs normally seek out viral DNA sequences, long form tracrRNAs target the CRISPR-Cas9 system itself. The long form tracrRNA tends to sit on DNA, rather than cut it. When this happens in a particular area of a gene, it prevents that gene from expressing, -- or becoming functional.

To confirm this, the researchers used genetic engineering to alter the length of a certain region in long form tracrRNA to make the tracrRNA appear more like a guide RNA. They found that with the altered long form tracrRNA, Cas9 once again behaved more like a scissor.

Other experiments showed that in lab-grown bacteria with a plentiful amount of long form tracrRNA, levels of all CRISPR-related genes were very low. When the long form tracrRNA was removed from bacteria, however, expression of CRISPR-Cas9 genes increased a hundredfold.

Bacterial cells lacking the long form tracrRNA were cultured in the laboratory for three days and compared with similarly cultured cells containing the long form tracrRNA. By the end of the experiment, bacteria without the long form tracrRNA had completely died off, suggesting that long form tracrRNA normally protects cells from the sickness and death that happen when CRISPR-Cas9 activity is very high.

"We started to get the idea that the long form was repressing but not eliminating its own CRISPR-related activity," says Workman.

To see if the long form tracrRNA could be re-programmed to repress other bacterial genes, the research team altered the long form tracrRNA's spacer region to let it sit on a gene that produces green fluorescence. Bacteria with this mutated version of long form tracrRNA glowed less green than bacteria containing the normal long form tracrRNA, suggesting that the long form tracrRNA can be genetically engineered to dial down other bacterial genes.

Another research team, from Emory University, found that in the parasitic bacteria Francisella novicida, Cas9 behaves as a dimmer switch for a gene outside the CRISPR-Cas9 region. The CRISPR-Cas9 system in the Johns Hopkins study is more widely used by scientists as a gene-cutting tool, and the Johns Hopkins team's findings provide evidence that the dimmer action controls the CRISPR-Cas9 system in addition to other genes.

The researchers also found the genetic components of long form tracrRNA in about 40% of the Streptococcus group of bacteria. Further study of bacterial strains that don't have the long form tracrRNA, says Workman, will potentially reveal whether their CRISPR-Cas9 systems are intact, and other ways that bacteria may dial back the CRISPR-Cas9 system.

The dimmer capability that the experiments uncovered, says Modell, offers opportunities to design new or better CRISPR-Cas9 tools aimed at regulating gene activity for research purposes. "In a gene editing scenario, a researcher may want to cut a specific gene, in addition to using the long form tracrRNA to inhibit gene activity," he says.

INFORMATION:

Funding for the Johns Hopkins research was provided by the Johns Hopkins University School of Medicine.

Other scientists who contributed to the research include Teja Pammi, Binh Nguyen, Leonardo Graeff, Erika Smith, Suzanne Sebald and Marie Stoltzfus from Johns Hopkins, and Chad Euler from Weill Cornell Medical College.


[Attachments] See images for this press release:
Gene-editing 'scissor' tool may also be a 'dimmer switch'

ELSE PRESS RELEASES FROM THIS DATE:

Nonsurgical treatment for cerebral infarction using wearable wireless ultrasound devices

Nonsurgical treatment for cerebral infarction using wearable wireless ultrasound devices
2021-01-19
Cerebral infarction, commonly known as ischemic stroke, has a high mortality rate and causes severe damage to nervous cells in the brain owing to the loss of oxygen, which results in limiting body movements. Several technologies, including physiotherapy and brain stimulation techniques, are being developed and tested for the rehabilitation of brain nervous cells damaged by a stroke. In particular, low-intensity focused ultrasound is expected to be effective for rehabilitating neurological diseases such as stroke, as it can excite or inhibit nerve cells by delivering mechanical energy with high precision at the desired position, while ultrasound is penetrating the cranium without requiring a surgical operation. Korea Institute of Science and Technology (KIST) announced that the research ...

One-dimensional quantum nanowires fertile ground for Majorana zero modes

One-dimensional quantum nanowires fertile ground for Majorana zero modes
2021-01-19
Why is studying spin properties of one-dimensional quantum nanowires important? Quantum nanowires-which have length but no width or height-provide a unique environment for the formation and detection of a quasiparticle known as a Majorana zero mode. A new UNSW-led study overcomes previous difficulty detecting the Majorana zero mode, and produces a significant improvement in device reproducibility. Potential applications for Majorana zero modes include fault-resistant topological quantum computers, and topological superconductivity. MAJORANA FERMIONS IN 1D WIRES A Majorana fermion is a composite particle that is its own antiparticle. Antimatter explainer: Every fundamental particle has a corresponding antimatter particle, with ...

A biological strategy reveals how efficient brain circuitry develops spontaneously

A biological strategy reveals how efficient brain circuitry develops spontaneously
2021-01-19
A KAIST team's mathematical modelling shows that the topographic tiling of cortical maps originates from bottom-up projections from the periphery. Researchers have explained how the regularly structured topographic maps in the visual cortex of the brain could arise spontaneously to efficiently process visual information. This research provides a new framework for understanding functional architectures in the visual cortex during early developmental stages. A KAIST research team led by Professor Se-Bum Paik from the Department of Bio and Brain Engineering has demonstrated that the orthogonal organization of retinal mosaics in the periphery is mirrored onto the primary visual cortex and initiates ...

Semiconductor chip that detects exhaled gas with high sensitivity at room temperature

Semiconductor chip that detects exhaled gas with high sensitivity at room temperature
2021-01-19
Overview: Third-year doctoral student Toshiaki Takahashi, associate professor Kazuhiro Takahashi, and their research team from the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology developed a testing chip using semiconductor micro-machining that can detect volatile gasses in exhaled breath in ppm concentrations at room temperature. A polymer that expands and contracts when gas is absorbed is formed on a flexibly deformable nanosheet, and the amount of deformation that occurs when a target gas is absorbed is measured, allowing gas to be detected at high sensitivity. ...

Bio-inspired: How lobsters can help make stronger 3D printed concrete

2021-01-19
New research shows that patterns inspired by lobster shells can make 3D printed concrete stronger, to support more complex and creative architectural structures. Digital manufacturing technologies like 3D concrete printing (3DCP) have immense potential to save time, effort and material in construction. They also promise to push the boundaries of architectural innovation, yet technical challenges remain in making 3D printed concrete strong enough for use in more free-form structures. WATCH AND EMBED THE VIDEO: https://youtu.be/mpPAPlst42o In a new experimental study, researchers at RMIT University ...

Optical data transmission speed increased by a factor of at least 10,000

Optical data transmission speed increased by a factor of at least 10,000
2021-01-19
Pulsed lasers repeatedly emit light for a short period of time as if blinking. They have the advantage of focusing more energy than a continuous wave laser, whose intensity is kept unchanged over time. If digital signals are loaded in a pulsed laser, each pulse can encode one bit of data. In this respect, the higher the repetition rate, the more the amount of data that can be transmitted. However, conventional optical-fiber-based pulsed lasers have typically had a limitation in increasing the number of pulses per second above the MHz level. The Korea Institute of Science and Technology (KIST) announced that the research ...

Research establishes antibiotic potential for cannabis molecule

Research establishes antibiotic potential for cannabis molecule
2021-01-19
Synthetic cannabidiol, better known as CBD, has been shown for the first time to kill the bacteria responsible for gonorrhoea, meningitis and legionnaires disease. The research collaboration between The University of Queensland and Botanix Pharmaceuticals Limited could lead to the first new class of antibiotics for resistant bacteria in 60 years. The UQ Institute for Molecular Bioscience's Associate Professor Mark Blaskovich said CBD - the main nonpsychoactive component of cannabis - can penetrate and kill a wide range of bacteria including Neisseria gonorrhoeae, which causes ...

A neuronal cocktail for motivation

A neuronal cocktail for motivation
2021-01-19
'A journey of a thousand miles begins with a single step' is a popular adage that talks about the initial thrust required to embark on a task. However, once begun, how do we persevere on the job and not let it fall apart like a New Year resolution? How do we stay motivated? Well, these are not just philosophical deliberations, but compelling science projects for neuroscience aficionados. Scientists have in fact been on the lookout for the neuronal and molecular players which are at the root of governing motivation. Here is a research story from the generous fruit fly that identifies the machinery behind the fly's relentless flying pursuits. Prof. Gaiti Hasan's group, in a recent study, has discovered that the ability of flies to sustain ...

Eating habits partly down to your genetics, finds new study

2021-01-19
Your food intake patterns are partly under genetic control, according to the latest research from researchers at King's College London, published today in the journal Twin Research and Human Genetics. Researchers can study the quality of an individual's typical diet by using a type of analysis called 'dietary indices'. Researchers use dietary indices to understand what foods someone eats and the nutrients provided, compared with recommended guidelines. The team analysed food questionnaire responses from 2,590 twins, using nine commonly used dietary indices. The researchers studied the degree of similarity among identical twins - who share 100% of their genes - compared with non-identical twins, who share 50% of their genes. The team found that identical twin pairs ...

Illinois researchers publish article describing Illinois RapidVent Emergency Ventilator

Illinois researchers publish article describing Illinois RapidVent Emergency Ventilator
2021-01-19
The design, testing, and validation of the Illinois RapidVent emergency ventilator has been published in the journal Plos One. The article, "Emergency Ventilator for COVID-19," by University of Illinois Urbana researchers, is the first of its kind to report such details about an emergency ventilator that was designed, prototyped, and tested at the start of the COVID-19 pandemic in 2020. "This article reports the development and testing of the RapidVent emergency ventilator," said William King, professor at The Grainger College of Engineering and Carle Illinois College of Medicine, and leader of the RapidVent ...

LAST 30 PRESS RELEASES:

International collaboration enabled participatory stock assessment on glass eel fisheries in West Java, Indonesia

Enhanced melanoma vaccine offers improved survival for men

Nearly one-third of patients with TBI have marginal or inadequate health literacy

Genetic causes of cerebral palsy uncovered through whole-genome sequencing

Modesty and boastfulness – perception depends on usual performance

Do sweeteners increase your appetite? New evidence from randomised controlled trial says no 

Women with obesity do not need to gain weight during pregnancy, new study suggests

Individuals with multiple sclerosis face substantially greater risk of hospitalisation and death from COVID-19, despite high rates of vaccination

Study shows obesity in childhood associated with a more than doubling of risk of developing multiple sclerosis in early adulthood

Rice Emerging Scholars Program receives $2.5M NSF grant to boost STEM education

Virtual rehabilitation provides benefits for stroke recovery

Generative AI develops potential new drugs for antibiotic-resistant bacteria

Biofuels could help island nations survive a global catastrophe, study suggests

NJIT research team discovering how fluids behave in nanopores with NSF grant

New study shows association of historical housing discrimination and shortfalls in colon cancer treatment

Social media use may help to empower plastic surgery patients

Q&A: How to train AI when you don't have enough data

Wayne State University researchers uncover potential treatment targets for Zika virus-related eye abnormalities

Discovering Van Gogh in the wild: scientists unveil a new gecko species

Small birds spice up the already diverse diet of spotted hyenas in Namibia

Imaging detects transient “hypoxic pockets” in the mouse brain

Dissolved organic matter could be used to track and improve the health of freshwaters

Indoor air quality standards in public buildings would boost health and economy, say international experts

Positive associations between premenstrual disorders and perinatal depression

New imaging method illuminates oxygen's journey in the brain

Researchers discover key gene for toxic alkaloid in barley

New approach to monitoring freshwater quality can identify sources of pollution, and predict their effects

Bidirectional link between premenstrual disorders and perinatal depression

Cell division quality control ‘stopwatch’ uncovered

Vaccine protects cattle from bovine tuberculosis, may eliminate disease

[Press-News.org] Gene-editing 'scissor' tool may also be a 'dimmer switch'
CRISPR technology shown to 'dial down' gene activity in bacteria