PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Domino effects and synchrony in seizure initiation

Domino effects and synchrony in seizure initiation
2021-01-25
(Press-News.org) Epilepsy, a neurological disease that causes recurring seizures with a wide array of effects, impacts approximately 50 million people across the world. This condition has been recognized for a long time -- written records of epileptic symptoms date all the way back to 4000 B.C.E. But despite this long history of knowledge and treatment, the exact processes that occur in the brain during a seizure remain elusive.

Scientists have observed distinctive patterns in the electrical activity of neuron groups in healthy brains. Networks of neurons move through states of similar behavior (synchronization) and dissimilar behavior (desynchronization) in a process that is associated with memory and attention. But in a brain with a neurological disorder like epilepsy, synchronization can grow to a dangerous extent when a collection of brain cells begins to emit excess electricity. "Synchronization is thought to be important for information processing," Jennifer Creaser of the University of Exeter said. "But too much synchronization--such as what occurs in epileptic seizures or Parkinson's disease--is associated with disease states and can impair brain function." Measurements of epileptic seizures have revealed that desynchronization in brain networks often occurs before or during the early stages of a seizure. As the seizure progresses, networks become increasingly more synchronized as additional regions of the brain get involved, leading to high levels of synchronization towards the seizure's end. Understanding the interactions between the increased electrical activity during a seizure and changes in synchronization is an important step towards improving the diagnosis and treatment of epilepsy.

Jennifer Creaser, Peter Ashwin (University of Exeter), and Krasimira Tsaneva-Atanasova (University of Exeter, Technical University of Munich, and Bulgarian Academy of Sciences) explored the mechanisms of synchronization that accompany seizure onset in a paper that published in December in the SIAM Journal on Applied Dynamical Systems. In their study--which took place at the Engineering and Physical Science Research Council's Centre for Predictive Modelling in Healthcare at the University of Exeter and University of Birmingham--the researchers used mathematical modeling to explore the interplay between groups of neurons in the brain that leads to transitions in synchronization changes during seizure onset. "Although this is a theoretical study of an idealized model, it is inspired by challenges posed by understanding transitions between healthy and pathological activity in the brain," Ashwin said. The authors utilize an extended version of an existing mathematical model that represents the brain as a network connecting multiple nodes of neuron groups. The model network consists of bistable nodes, meaning that each node is able to switch between two stable states: resting (a quiescent state) and seizure (an active and oscillatory state). These nodes remain in their current state until they receive a stimulus that gives them a sufficient kick to escape to the other state. In the model, this stimulus comes from other connected nodes or appears in the form of "noise" -- outside sources of neural activity, such as endocrine responses that are associated with an emotional state or physiological changes due to disease.

The influence between neighboring nodes is governed by a coupling function that represents the way in which the nodes in the network communicate with each other. The first of the two possible types of coupling is amplitude coupling, which is governed by the "loudness" of the neighboring nodes. The second is phase coupling, which is related to the speed at which the neighbors are firing. Although the researchers needed to utilize a simple formulation on a small network to even make their analysis possible--a more complex and realistic system would be too computationally taxing--they expected their model to exhibit the same types of behaviors that clinical recordings of real brain activity have revealed. The nodes in the modeled system all begin in the healthy resting state. In previous research, the authors found that adding a small amount of noise to the system caused each node to transition to the active state -- but the system's geometry was such that returning to the resting state took much longer than leaving. Because of this, these escapes can spread sequentially as a "domino effect" when a number of nodes are connected. This leads to a cascade of escapes to the active state--much like a falling line of dominos--that spreads activity across the network.

Creaser, Ashwin, and Tsaneva-Atanasova's new paper builds upon this previous research on the domino effect to explore the transitions into and out of synchrony that occur during cascades of escapes. The team used their model to identify the circumstances that bring about these changes in synchrony and investigate how the type of coupling in a network affects its behavior.

When the model incorporated only amplitude coupling, it exhibited a new phenomenon in which the domino effect could accelerate or decelerate. However, this effect had no bearing on synchronization changes in the network; all of the nodes started and remained synchronized. But when the model incorporated more general amplitude and phase coupling, the authors found that the nodes' synchrony could change between consecutive escapes during the domino effect. They then determined which conditions would cause changes in synchrony under phase-amplitude coupling. This change in synchrony throughout the sequence of escapes was the study's most novel result. The results of this work could facilitate further studies on seizures and their management. "The mathematical modeling of seizure initiation and propagation can not only help to uncover seizures' complex underlying mechanisms, but also provide a means for enabling in silico experiments to predict the outcome of manipulating the neural system," Tsaneva-Atanasova said. Understanding the interplay between synchronized and desynchronized dynamics in brain networks could help identify clinically-relevant measures for seizure treatment. For example, Creaser and Tsaneva-Atanasova recently served as the lead and senior author, respectively, on a paper that utilized a simpler version of the model to classify patterns of seizure onset that were recorded in a clinical setting. In the future, these kinds of modeling studies may lead to the personalization of seizure identification and treatment for individuals with epilepsy.

INFORMATION:

Source article: Creaser, J., Ashwin, P., & Tsaneva-Atanasova, K. (2020). Sequential Escapes and Synchrony Breaking for Networks of Bistable Oscillatory Nodes. SIAM J. Appl. Dyn. Sys., 19(4), 2829-2864.


[Attachments] See images for this press release:
Domino effects and synchrony in seizure initiation

ELSE PRESS RELEASES FROM THIS DATE:

SARS-CoV-2 reacts to antibodies of virus from 2003 SARS outbreak, new study reveals

2021-01-25
A new study demonstrates that antibodies generated by the novel coronavirus react to other strains of coronavirus and vice versa, according to research published today by scientists from Oregon Health & Science University. However, antibodies generated by the SARS outbreak of 2003 had only limited effectiveness in neutralizing the SARS-CoV-2 virus. Antibodies are blood proteins that are made by the immune system to protect against infection, in this case by a coronavirus. The study published today in the journal Cell Reports. "Our finding has some important implications concerning immunity toward different strains of coronavirus infections, ...

Newly discovered subset of brain cells fight inflammation with instructions from the gut

2021-01-25
Astrocytes are the most abundant type of cells within the central nervous system (CNS), but they remain poorly characterized. Researchers have long assumed that astrocytes' primary function is to provide nutrients and support for the brain's more closely scrutinized nerve cells; over the years, however, increasing evidence has shown that astrocytes can also actively promote neurodegeneration, inflammation, and neurological diseases. Now, a team led by researchers from Brigham and Women's Hospital, has shown that a specific astrocyte sub-population can do the opposite, instead serving a protective, anti-inflammatory function within the brain based on signals regulated by the bacteria that reside in ...

Adagio publishes preclinical data on lead coronaviruses antibody

2021-01-25
-Data demonstrate ADG2 binds to all known variants of SARS-CoV-2 and is not impacted by known circulating resistance mutations- -Company expects to begin clinical studies for a half-life extended version of ADG2 for the treatment and prevention of COVID-19 in early 2021- Waltham, MA - January 25, 2021- Adagio Therapeutics, Inc., a biotechnology company developing best-in-class antibodies to broadly neutralize coronaviruses, today published in vitro and in vivo data in Science on its lead antibody candidate, ADG2, which demonstrated similar or higher potency against SARS-CoV-2 compared to other monoclonal antibodies (mAbs) in clinical development and strong binding to all known ...

In preclinical models, antiviral better inhibits COVID-19 than Remdesivir; further studies warranted

2021-01-25
Working in preclinical models, researchers report that plitidepsin, a drug with limited clinical approval for the treatment of multiple myeloma, is more potent against SARS-CoV-2 than remdesivir, an antiviral that received FDA emergency use authorization for the treatment of COVID-19 in 2020. The results suggest plitidepsin should be further evaluated as a COVID-19 therapy, the authors say; because it targets a host protein rather than a viral protein, if treatment proves successful in humans, the SARS-CoV-2 virus won't be easily able to gain resistance ...

Mapping mutations that escape antibodies against COVID-19 suggests prior mapping incomplete

2021-01-25
A new approach to mapping viral mutations that "escape" leading clinical antibodies has revealed mutations in the SARS-CoV-2 virus that allow it to evade treatments, including a single amino-acid mutation that fully escapes Regeneron's antibody cocktail. These maps, say the authors, demonstrate that prior characterization of escape mutations was incomplete. They will also help to enable immediate interpretation of the effects of the mutations cataloged by viral genomic surveillance, say the authors. Several antibodies are in use or under development as therapies to treat COVID-19. As new SARS-CoV-2 variants emerge, it ...

Researchers engineer antibody that acts against multiple SARS-like viruses

2021-01-25
Researchers have engineered an antibody that neutralizes SARS-CoV-2 with a potency that "rivals" current lead SARS-CoV-2 clinical neutralizing antibodies, and that also broadly neutralizes a range of clade 1 sarbecoviruses. Their antibody, ADG-2, studied in mice, represents a "promising candidate" for the prevention and treatment of not only COVID-19, they say, but also of future respiratory diseases caused by SARS-related coronaviruses. Although two vaccines and two monoclonal antibody (mAb) therapies have been authorized for emergency use by the FDA, it is unknown whether these vaccines and treatments will provide broad protection against new emerging SARS-CoV-2 strains that originate in humans or animal reservoirs; this is partly ...

Nearly one in four families hesitant to take their child to ER during COVID-19 pandemic

2021-01-25
During the first wave of the COVID-19 pandemic, nearly one in four families responded that they would be unlikely to bring their child to the Emergency Department if they had an emergency condition, according to a survey from Ann & Robert H. Lurie Children's Hospital of Chicago published in the journal Academic Emergency Medicine. Greater hesitancy to seek emergency care was found in families living in under-resourced communities, those who rely on public insurance and in families who are Black, Latinx or Asian. "We observed greater hesitancy to use the Emergency Department among more vulnerable demographic groups who historically showed high utilization of emergency care for their children," ...

Bioorthogonally catalyzed lethality strategy generates targeting drugs within tumor

Bioorthogonally catalyzed lethality strategy generates targeting drugs within tumor
2021-01-25
Cancer is the second leading cause of death in the world. The number of deaths and incidences is increasing each year. The metal-based anticancer drugs were used clinically worldwide, but suffer from poor selectivity, serious side effects and drug resistance. Tumor-targeting drug development is the basis for precise cancer treatment. Recently, Professor Hongke Liu of Nanjing Normal University, Professor Jing Zhao and Academician Zijian Guo of Nanjing University have made breakthrough achievements in anticancer drug development. They proposed a "bio-orthogonally catalyzed lethality" (BCL) strategy ...

3-D printed Biomesh minimizes hernia repair complications

3-D printed Biomesh minimizes hernia repair complications
2021-01-25
Hernias are one of the most common soft tissue injuries. Hernias form when intra-abdominal content, such as a loop of the intestine, squeezes through weak, defective or injured areas of the abdominal wall. The condition may develop serious complications, therefore hernia repair may be recommended. Repair consists of surgically implanting a prosthetic mesh to support and reinforce the damaged abdominal wall and facilitate the healing process. However, currently used mesh implants are associated with potentially adverse postsurgical complications. "Although hernia mesh implants are mechanically strong and support abdominal tissue, making the patient feel comfortable initially, ...

CHEOPS finds unique planetary system

CHEOPS finds unique planetary system
2021-01-25
Musical notes that sound pleasant together can form a harmony. These notes are usually in a special relationship with each other: when expressed as frequencies, their ratios result in simple fractions, such as four-thirds or three-halves. Similarly, a planetary system can also form a kind of harmony when planets, whose orbital period ratios form simple fractions, regularly attract each other with their gravity. When one planet takes three days to orbit its star and its neighbor takes two days, for example. Using the CHEOPS space telescope, scientists, led by astrophysicist Adrien Leleu of the Center for Space and Habitability of the University of Bern, the University of Geneva and ...

LAST 30 PRESS RELEASES:

Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology

Fish-friendly dentistry: New method makes oral research non-lethal

Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)

A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets

New scan method unveils lung function secrets

Searching for hidden medieval stories from the island of the Sagas

Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model

Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label

Twelve questions to ask your doctor for better brain health in the new year

Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes

Study identifies genetic cause for yellow nail syndrome

New drug to prevent migraine may start working right away

Good news for people with MS: COVID-19 infection not tied to worsening symptoms

Department of Energy announces $179 million for Microelectronics Science Research Centers

Human-related activities continue to threaten global climate and productivity

Public shows greater acceptance of RSV vaccine as vaccine hesitancy appears to have plateaued

Unraveling the power and influence of language

Gene editing tool reduces Alzheimer’s plaque precursor in mice

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

[Press-News.org] Domino effects and synchrony in seizure initiation