PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Bioengineered hybrid muscle fiber for regenerative medicine

Regeneration of muscle tissue was achieved by combining direct cell reprogramming with natural-synthetic hybrid scaffold as structural support

Bioengineered hybrid muscle fiber for regenerative medicine
2021-02-22
(Press-News.org) Muscle is the largest organ that accounts for 40% of body mass and plays an essential role in maintaining our lives. Muscle tissue is notable for its unique ability for spontaneous regeneration. However, in serious injuries such as those sustained in car accidents or tumor resection which results in a volumetric muscle loss (VML), the muscle's ability to recover is greatly diminished. Currently, VML treatments comprise surgical interventions with autologous muscle flaps or grafts accompanied by physical therapy. However, surgical procedures often lead to a reduced muscular function, and in some cases result in a complete graft failure. Thus, there is a demand for additional therapeutic options to improve muscle loss recovery.

A promising strategy to improve the functional capacity of the damaged muscle is to induce de novo regeneration of skeletal muscle via the integration of transplanted cells. Diverse types of cells, including satellite cells (muscle stem cells), myoblasts, and mesenchymal stem cells, have been used to treat muscle loss. However, invasive muscle biopsies, poor cell availability, and limited long-term maintenance impede clinical translation, where millions to billions of mature cells may be needed to provide therapeutic benefits.

Another important issue is controlling the three-dimensional microenvironment at the injury site to ensure that the transplanted cells properly differentiate into muscle tissues with desirable structures. A variety of natural and synthetic biomaterials have been used to enhance the survival and maturation of transplanted cells while recruiting host cells for muscle regeneration. However, there are unsolved, long-lasting dilemmas in tissue scaffold development. Natural scaffolds exhibit high cell recognition and cell binding affinity, but often fail to provide mechanical robustness in large lesions or load-bearing tissues that require long-term mechanical support. In contrast, synthetic scaffolds provide a precisely engineered alternative with tunable mechanical and physical properties, as well as tailored structures and biochemical compositions, but are often hampered by lack of cell recruitment and poor integration with host tissue.

To overcome these challenges, a research team at the Center for Nanomedicine within the Institute for Basic Science (IBS) in Seoul, South Korea, Yonsei University, and the Massachusetts Institute of Technology (MIT) devised a novel protocol for artificial muscle regeneration. The team achieved effective treatment of VML in a mouse model by employing direct cell reprogramming technology in combination with a natural-synthetic hybrid scaffold.

Direct cell reprogramming, also called direct conversion, is an efficient strategy that provides effective cell therapy because it allows the rapid generation of patient-specific target cells using autologous cells from the tissue biopsy. Fibroblasts are the cells that are commonly found within the connective tissues, and they are extensively involved in wound healing. As the fibroblasts are not terminally differentiated cells, it is possible to turn them into induced myogenic progenitor cells (iMPCs) using several different transcription factors. Herein, this strategy was applied to provide iMPC for muscle tissue engineering.

In order to provide structural support for the proliferating muscle cells, polycaprolactone (PCL), was chosen as a material for the fabrication of a porous scaffold due to its high biocompatibility. While salt-leaching is a widely used method to create porous materials, it is mostly limited to producing closed porous structures. To overcome this limitation, the researchers augmented the conventional salt leaching method with thermal drawing to produce customized PCL fiber scaffolds. This technique facilitated high-throughput fabrication of porous fibers with controlled stiffness, porosity, and dimensions that enable precise tailoring of the scaffolds to the injury sites.

However, the synthetic PCL fiber scaffolds alone do not provide optimal biochemical and local mechanical cues that mimic muscle-specific microenvironment. Hence the construction of a hybrid scaffold was completed through the incorporation of decellularized muscle extracellular matrix (MEM) hydrogel into the PCL structure. Currently, MEM is one of the most widely used natural biomaterials for the treatment of VML in clinical practice. Thus, the researchers believe that hybrid scaffolds engineered with MEM have a huge potential in clinical applications.

The resultant bioengineered muscle fiber constructs showed mechanical stiffness similar to that of muscle tissues and exhibited enhanced muscle differentiation and elongated muscle alignment in vitro. Furthermore, implantation of bioengineered muscle constructs in the VML mouse model not only promoted muscle regeneration with increased innervation and angiogenesis but also facilitated the functional recovery of damaged muscles. The research team notes: "The hybrid muscle construct might have guided the responses of exogenously added reprogrammed muscle cells and infiltrating host cell populations to enhance functional muscle regeneration by orchestrating differentiation, paracrine effect, and constructive tissue remodeling."

Prof. CHO Seung-Woo from the IBS Center for Nanomedicine and Yonsei University College of Life Science and Biotechnology who led this study notes: "Further studies are required to elucidate the mechanisms of muscle regeneration by our hybrid constructs and to empower the clinical translation of cell-instructive delivery platforms."

INFORMATION:


[Attachments] See images for this press release:
Bioengineered hybrid muscle fiber for regenerative medicine

ELSE PRESS RELEASES FROM THIS DATE:

Colorful connection found in coral's ability to survive higher temperatures

Colorful connection found in corals ability to survive higher temperatures
2021-02-21
Coral within the family Acropora are fast growers and thus important for reef growth, island formation, and coastal protection but, due to global environmental pressures, are in decline A species within this family has three different color morphs - brown, yellow-green, and purple, which appear to respond differently to high temperatures Researchers looked at the different proteins expressed by the different color morphs, to see whether these were related to their resilience to a changing environment The green variant was found to maintain high levels of green fluorescent proteins during summer heatwaves and was less likely to bleach than the other two morphs This suggest that resistance to thermal stress is influenced by a coral's underlying genetics, ...

Optical frequency combs found a new dimension

Optical frequency combs found a new dimension
2021-02-20
Periodic pulses of light forming a comb in the frequency domain are widely used for sensing and ranging. The key to the miniaturisation of this technology towards chip-integrated solutions is the generation of dissipative solitons in ring-shaped microresonators. Dissipative solitons are stable pulses circulating around the circumference of a nonlinear resonator. Since their first demonstration, the process of dissipative soliton formation has been extensively studied and today it is rather considered as textbook knowledge. Several directions of further development are ...

Depression, anxiety, loneliness are peaking in college students

Depression, anxiety, loneliness are peaking in college students
2021-02-20
A survey by a Boston University researcher of nearly 33,000 college students across the country reveals the prevalence of depression and anxiety in young people continues to increase, now reaching its highest levels, a sign of the mounting stress factors due to the coronavirus pandemic, political unrest, and systemic racism and inequality. "Half of students in fall 2020 screened positive for depression and/or anxiety," says END ...

Direct cloning method CAPTUREs novel microbial natural products

2021-02-19
Microorganisms possess natural product biosynthetic gene clusters (BGCs) that may harbor unique bioactivities for use in drug development and agricultural applications. However, many uncharacterized microbial BGCs remain inaccessible. Researchers at University of Illinois Urbana-Champaign previously demonstrated a technique using transcription factor decoys to activate large, silent BGCs in bacteria to aid in natural product discovery. Now, they have developed a direct cloning method that aims to accelerate large-scale discovery of novel natural products. Their findings are reported in the journal Nature Communications. Named Cas12a assisted precise targeted cloning using in vivo Cre-lox recombination (CAPTURE), ...

Time-lapse reveals the hidden dance of roots

2021-02-19
DURHAM, N.C. -- Duke researchers have been studying something that happens too slowly for our eyes to see. A team in biologist Philip Benfey's lab wanted to see how plant roots burrow into the soil. So they set up a camera on rice seeds sprouting in clear gel, taking a new picture every 15 minutes for several days after germination. When they played their footage back at 15 frames per second, compressing 100 hours of growth into less than a minute, they saw that rice roots use a trick to gain their first foothold in the soil: their growing tips make ...

RUDN University chemist used iodine to synthesize new chalcogenides

RUDN University chemist used iodine to synthesize new chalcogenides
2021-02-19
A chemist from RUDN University, working with a group of colleagues, synthesized three new chalcogenides (compounds that contain metals and elements from group 16 of the periodic table). The team suggested an unusual approach to synthesis that was based on iodine. An article about the work was published in the Dalton Transactions journal. Chalcogens are elements of group 16 of the periodic table that include oxygen, sulfur, selenium, tellurium, polonium, and livermorium--an artificial radioactive element. Chalcogenides are compounds of chalcogens with metals that are used as photosensitive ...

Call to action for research ethics in the time of COVID-19 and BLM

2021-02-19
Several University of Illinois Chicago faculty members have addressed the issue of how to ethically conduct research with Black populations. In their paper "Ethics of Research at the Intersection of COVID-19 and Black Lives Matter: A Call to Action," authors Natasha Crooks, an assistant professor, Phoenix Matthews, a professor, both of the UIC College of Nursing, and Geri Donenberg, director of the Center for Dissemination and Implementation Science at the UIC College of Medicine, highlight the historical issues that impact research involving Black populations. They also provide recommendations for researchers to ethically engage Black populations in research. ...

Biotechnologists developed an effective technology for nutrient biocapture from wastewater

Biotechnologists developed an effective technology for nutrient biocapture from wastewater
2021-02-19
Biotechnologists from RUDN University in collaboration with Lomonosov MSU and Kurchatov institute made an important contribution to the technology of phosphate and nitrate biocapture from wastewater using Lobosphaera algae fixed on the filters.The biomass obtained in the course of this process can be used as a fertilizer. The results of the study were published in the Journal of Water Process Engineering. Phosphates and nitrates get to the wastewater together with industrial and household waste, especially detergents. Both substances are parts of phosphorus and nitrogen chemical cycles. However, these cycles are disturbed by human activity, as the growing amounts of phosphates and nitrates cannot be processed by water ecosystems. As a result, these substances turn from useful nutrients ...

LSU Health study finds psychosocial factors may drive peritoneal dialysis patient dropout

2021-02-19
New Orleans, LA - A retrospective study conducted by LSU Health New Orleans reports that contrary to previous research, most patients who drop out of peritoneal dialysis may do so for psychosocial reasons. The findings are published in The American Journal of the Medical Sciences, available here. The paper inspired a companion editorial, available here. The research team evaluated the reasons that 27 of the 83 patients enrolled in the peritoneal dialysis program withdrew between 2016 and 2018. Twenty-four or 86% were African American. They found that psychosocial factors, including mental health illness such as anxiety and depression, loss of support networks, or inability to tolerate ...

Study reveals energy sources supporting coral reef predators

Study reveals energy sources supporting coral reef predators
2021-02-19
Since Charles Darwin's day, the abundance of life on coral reefs has been puzzling, given that most oceanic surface waters in the tropics are low in nutrients and unproductive. But now research, led by Newcastle University and published in in the journal Science Advances, has confirmed that the food web of a coral reef in the Maldives relies heavily on what comes in from the open ocean. The team found that these offshore resources contribute to more than 70% of reef predator diets, the rest being derived from reef associated sources. Led by Dr Christina Skinner, now based at the Hong Kong University of Science and Technology, the researchers included collaborators from Woods Hole Oceanographic Institution (USA), Banyan Tree Marine ...

LAST 30 PRESS RELEASES:

Rapid growth of global wildland-urban interface associated with wildfire risk, study shows

Generation of rat offspring from ovarian oocytes by Cross-species transplantation

Duke-NUS scientists develop novel plug-and-play test to evaluate T cell immunotherapy effectiveness

Compound metalens achieves distortion-free imaging with wide field of view

Age on the molecular level: showing changes through proteins

Label distribution similarity-based noise correction for crowdsourcing

The Lancet: Without immediate action nearly 260 million people in the USA predicted to have overweight or obesity by 2050

Diabetes medication may be effective in helping people drink less alcohol

US over 40s could live extra 5 years if they were all as active as top 25% of population

Limit hospital emissions by using short AI prompts - study

UT Health San Antonio ranks at the top 5% globally among universities for clinical medicine research

Fayetteville police positive about partnership with social workers

Optical biosensor rapidly detects monkeypox virus

New drug targets for Alzheimer’s identified from cerebrospinal fluid

Neuro-oncology experts reveal how to use AI to improve brain cancer diagnosis, monitoring, treatment

Argonne to explore novel ways to fight cancer and transform vaccine discovery with over $21 million from ARPA-H

Firefighters exposed to chemicals linked with breast cancer

Addressing the rural mental health crisis via telehealth

Standardized autism screening during pediatric well visits identified more, younger children with high likelihood for autism diagnosis

Researchers shed light on skin tone bias in breast cancer imaging

Study finds humidity diminishes daytime cooling gains in urban green spaces

Tennessee RiverLine secures $500,000 Appalachian Regional Commission Grant for river experience planning and design standards

AI tool ‘sees’ cancer gene signatures in biopsy images

Answer ALS releases world's largest ALS patient-based iPSC and bio data repository

2024 Joseph A. Johnson Award Goes to Johns Hopkins University Assistant Professor Danielle Speller

Slow editing of protein blueprints leads to cell death

Industrial air pollution triggers ice formation in clouds, reducing cloud cover and boosting snowfall

Emerging alternatives to reduce animal testing show promise

Presenting Evo – a model for decoding and designing genetic sequences

Global plastic waste set to double by 2050, but new study offers blueprint for significant reductions

[Press-News.org] Bioengineered hybrid muscle fiber for regenerative medicine
Regeneration of muscle tissue was achieved by combining direct cell reprogramming with natural-synthetic hybrid scaffold as structural support