(Press-News.org) A Hong Kong Baptist University-led (HKBU) research team has developed a novel drug which has the potential to become a next-generation treatment for cancers associated with Epstein-Barr virus (EBV).
The peptide-linked drug, which is responsive to the acidic environment found in tumours, is the first known agent to have successfully targeted two viral proteins that are simultaneously produced by EBV. It also offers a new strategy by increasing the uptake of anti-cancer drugs in tumour cells, thus allowing the application of lower drug dosages which helps reduce treatment side effects and health risks.
The research results were published in the international academic journal Advanced Science.
New drug targets two EBV-specific viral proteins
EBV is one of the most common viruses in humans, having infected more than 90% of the human population worldwide. It is widely known that the virus plays a key role in several cancers such as nasopharyngeal carcinoma (NPC), which is highly prevalent in Hong Kong and southern China.
Led by Professor Gary Wong Ka-Leung, Professor and Head of the Department of Chemistry at HKBU, Dr Lung Hong Lok, Assistant Professor of the Department of Chemistry at HKBU, and Dr Law Ga-lai, Associate Professor of the Department of Applied Biology and Chemical Technology at The Hong Kong Polytechnic University, the research team constructed a novel drug with a peptide, i.e., a component of the building blocks of various proteins, that can target two EBV-specific viral proteins - Latent membrane protein 1 (LMP1) and Epstein-Barr nuclear antigen 1 (EBNA1). They are the viral proteins which are expressed in all EBV-infected tumour cells, and both play a vital role in the development and progression of EBV-associated tumours.
Leveraging the success of the first-generation drugs developed by the research team in recent years, this novel dual-targeting drug employs the treatment mechanisms of: (1) targeting and binding to EBNA1, making it no longer functional, and (2) inhibiting LMP1 and serving as an imaging agent. Since LMP1 is more accessible to drug targeting due to its presence on the surface of cells, the ability of the new drug to selectively identify EBV-infected cancer cells is largely enhanced.
pH-sensitivity improves drug targeting
In addition, the researchers engineered the drug so that it has excellent sensitivity to an acidic environment. When the drug binds to a tumour cell, its peptide will cleave and be released in response to the acidic tumour microenvironment. It then enters the nucleus of the tumour cell and hinders the function of EBNA1. Since normal cells have a neutral environment, and cancer cells usually prevail in an acidic environment, the new drug's excellent sensitivity to acidic environments can minimise its off-target rate. As a result, unintended damage to normal cells can be reduced.
The synergistic combination of pH sensitivity (in an acidic environment) and the specific targeting of an accessible surface protein (LMP1) will dramatically raise the new drug's efficacy. The resulting increase in drug uptake rates will allow the application of a lower drug dosage and it will also minimise the side effects and health risks whilst maintaining the drug's functions.
The study also showed that the drug can emit unique responsive fluorescent signals once it has bound to the viral proteins, illustrating its potential role in tumour cell imaging.
Animal model demonstrates drug efficacy and safety
The novel drug was tested in an animal model by injecting it into mice with EBV-positive NPC tumours. The results showed that a low drug dosage of 12.5 mg per kg of body weight could reduce the NPC tumour size by half. In addition, the average body weight of the mice increased slightly during the experimental period, indicating an improvement in their health condition.
"The experimental results are good indicators that prove the drug's efficacy and safety. Since this is the first example of simultaneous imaging and inhibition of two EBV viral proteins, it can serve as a blueprint for a next-generation drug for the safe monitoring and treatment of a specific cancer," said Professor Wong.
INFORMATION:
HKBU has established a spin-off company named BP InnoMed Limited (BPI) to further develop this new anti-EBV drug and carry out clinical trials. Recently, the company was named as the Best Public Communicator in the 2020 Bridging Research from Academia to Cancer Entrepreneurship Venture Competition, which was organised by the Asian Fund for Cancer Research. In 2020, BPI was also accepted by the Incu-Bio Program of the Hong Kong Science and Technology Park, and it will establish a laboratory there for preclinical analysis of the anti-EBV drugs.
Other members of the research team include Dr Di Jinming, Associate Professor of Surgery of The Third Affiliated Hospital at Sun Yat-sen University.
Modern electronics is approaching the limit of its capabilities, which are determined by the fundamental laws of physics. Therefore, the use of classical materials, for example, silicon, is no longer able to meet the requirements for energy efficiency of the devices. Currently, it is necessary to start searching for new materials, new principles of electronic devices' functioning. To solve this problem, researchers of Peter the Great St.Petersburg Polytechnic University (SPbPU) are developing thin films, the elements for biomolecular electronics. Scientists believe that biological macromolecules such as nucleic acids, proteins, amino acids can become a promising material for modern ...
Overview:
A research team at the Department of Electrical and Electronic Information Engineering, Department of Computer Science and Engineering, Department of Applied Chemistry and Life Science, and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed a lightweight, compact, Bluetooth-low-energy-based wireless neuronal recording system for use in mice. The wireless system weighs END ...
A number of scientists whose work is inspired by natural behavior is constantly growing. The lotus flower, with its ability to self- clean, is commonly described in literature and can be best examples the trend. Researchers started to wonder why the flower behaves in this manner and they decided to study its structure with the use of microscopes. Hence, they could draw the conclusion that the structure is highly hydrophobic, i.e. it maintains water drops on the surface. Water then collects particles of dust and by flowing down, removes them by flowing down. It means the adhesion forces, those responsible ...
The lists of Earth's endangered animals and plants are getting increasingly longer. But in order to stop this trend, we require more information. It is often difficult to find out exactly where the individual species can be found and how their populations are developing. According to a new overview study published in Methods in Ecology and Evolution by Dr Annegret Grimm-Seyfarth from the Helmholtz Centre for Environmental Research (UFZ) and her colleagues, specially trained detection dogs can be indispensable in such cases. With the help of these dogs, the species sought can usually be found faster and more effectively than with other methods.
How many otters are there ...
TPU researchers jointly with their colleagues from foreign universities have developed a method that allows for a laser-driven integration of metals into polymers to form electrically conductive composites. The research findings are presented in Ultra-Robust Flexible Electronics by Laser-Driven Polymer-Nanomaterials Integration article Ultra-Robust Flexible Electronics by Laser-Driven Polymer-Nanomaterials Integration, published in Advanced Functional Materials academic journal (Q1, IF 16,836).
"Currently developing breakthrough technologies such as the Internet of Things, flexible electronics, brain-computer interfaces will have a great impact on ...
The key are the ultra-fast flashes of light, with which the team led by Dr. Friedrich Roth works at FLASH in Hamburg, the world's first free-electron laser in the X-ray region. "We took advantage of the special properties of this X-ray source and expanded them with time-resolved X-ray photoemission spectroscopy (TR-XPS). This method is based on the external photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize in Physics in 1921.
"For the first time, we were able to directly analyze the specific charge separation and subsequent processes when light hits a model system such as an organic solar cell. ...
Research groups at the University of Helsinki uncovered how motor protein myosin, which is responsible for contraction of skeletal muscles, functions also in non-muscle cells to build contractile structures at the inner face of the cell membrane. This is the first time when such 'mini-muscles', also known as stress fibers, have been seen to emerge spontaneously through myosin-driven reorganization of the pre-existing actin filament network in cells. Defects in the assembly of these 'mini-muscles' in cells lead to multiple disorders in humans, and in the most severe cases to cancer progression.
A new study published in eLife, drills into the core mechanisms of stress fiber assembly, and reveals how stress fibers can be built directly ...
Okazaki, Japan - Making gametes such as sperm and eggs from pluripotent stem cells, primitive cells that can make all the tissues, greatly contributes to efficient reproduction of livestock animals and future assisted reproductive medicine. Researchers pave the way to achieve this goal using a body of xenogenic animals.
The researchers previously developed a method to grow stem cells into an entire organ in the body, so-called blastocyst complementation. The blastocyst is a structure of early embryos. If stem cells are transplanted into the blastocyst obtained from animals that cannot make a certain organ, ...
Advances in hydraulic fracturing technology have enabled discovery of large reserves of natural gas which primarily contains methane, which is mainly burned directly and causing global warming potentially. Upgrading methane to greener energy such as methanol through aerobic oxidation is an ideal way to solve the problem and remain 100% atom economy.
Yet the difficulties lie in activating methane and preventing methanol from over-oxidation. Methane takes a stable non-polar tetrahedral structure with high dissociation energy of C-H bond, which requires high energy to be activated. ...
Des Plaines, IL - Initial management with inhaled methoxyflurane in the emergency department did not achieve the prespecified substantial reduction in pain, but was associated with clinically significant lower pain scores compared to standard therapy. That is the conclusion of a study titled Rapid Administration of Methoxyflurane to Patients in the Emergency Department (RAMPED) Study: A Randomized Controlled Trial of Methoxyflurane Versus Standard Care that was published recently in the February 2021 issue of Academic Emergency Medicine (AEM), a journal of the Society for Academic Emergency Medicine (SAEM).
According to findings of the controlled randomized trial, secondary outcomes included the pain ...