PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Why the lovable llama might be a secret weapon against COVID-19

2021-03-09
(Press-News.org) As the fight against COVID-19 continues, scientists have turned to an unlikely source for a potentially effective treatment: tiny antibodies naturally generated by llamas.

While the world has welcomed the news of multiple vaccines against COVID-19, the search for effective treatments for those who contract the virus is ongoing. Now scientists are looking to what might seem to be an unlikely source: the South American llama.

Researchers are using the ultrabright X-rays of the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Argonne National Laboratory, to help turn naturally generated llama antibodies into potentially effective therapies against SARS-CoV-2, the virus that causes COVID-19. Antibodies are the immune system's natural defense against infection, and when extracted from blood, they can be used to design treatments and vaccines.

"Llamas generate these nanobodies naturally in high yields, and they fit into the pockets on the surface of proteins that larger-size antibodies can't access." -- Jason McLellan, The University of Texas at Austin.

"We have received more than 50 llama antibodies with several proteins of SARS-CoV-2," said Andrzej Joachimiak, director of the Structural Biology Center (SBC) at the APS and co-director of the Center for Structural Genomics of Infectious Diseases. (Researchers at the APS do not work with the live virus, but with crystals grown from simulated proteins.) These antibodies are part of ongoing collaborations with several partners, including researchers at the National Institutes of Health (NIH) and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Joachimiak said, and will be analyzed using the APS to see if they combat the virus's infectivity.

While it may seem surprising that scientists are turning to llamas, there's a very good reason for it.

Llamas belong to a group of mammals called camelids, a group that also includes camels and alpacas. Thanks to a quirk of nature, camelids produce a unique type of antibody against disease. These antibodies, often referred to as nanobodies, are about half the size of the antibodies produced by humans. They're also remarkably stable and easy for scientists to manipulate.

This genetic quirk, which causes camelids such as llamas to produce these smaller antibodies with single protein chains, was discovered by accident in the late 1980s by scientists in Belgium. Since then, scientists have worked with camelid nanobodies to create treatments against several diseases with great success. Their small size allows them to bind to areas of viral proteins that larger antibodies cannot fit into, blocking those proteins from connecting with cells.

"Llamas generate these nanobodies naturally in high yields, and they fit into the pockets on the surface of proteins that larger-size antibodies can't access," said Jason McLellan, an associate professor at The University of Texas at Austin.

McLellan has years of experience working with camelid nanobodies. He and his graduate student Daniel Wrapp, along with Xavier Saelens' group in Belgium, have isolated nanobodies that have proven effective against respiratory syncytial virus (RSV) and two coronaviruses: severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS).

When the genetic sequence of SARS-CoV-2 was released in January of 2020, McLellan, Wrapp and Saelens worked quickly to test whether any of the antibodies that they had previously isolated against the original SARS-CoV (taken from a Belgian llama named Winter) could also bind and neutralize SARS-CoV-2.  They discovered that one of these nanobodies, which they had characterized using the SBC beamlines at the APS, might be effective against SARS-CoV-2. McLellan said this nanobody -- called VHH72 -- is now under development as a treatment for COVID-19. He and Wrapp received a 2020 Golden Goose Award for this research.

McLellan will tell you that while his results were good, his hopes were a little higher.

"We were seeking one potent antibody that neutralized all coronaviruses," he said. "We immunized Winter hoping to elicit that one nanobody. And maybe we elicited it, but we didn't isolate it."

Isolating these tiny nanobodies is tricky, since the body generates an enormous number of them and only a small fraction is intended to fight a particular virus. That's exactly the problem that Yi Shi, professor of cell biology at the University of Pittsburgh, is trying to fix.

In a paper published in Science, Shi and his colleagues unveiled a new advanced mass spectroscopy method of analyzing those nanobodies from samples of llama blood. The result, according to Shi and research assistant Yufei Xiang (the paper's lead author), is a large set of nanobodies that bind well to the SARS-CoV-2 virus.

"This is thousands of times better than the current technology, specifically in its selecting properties," Shi said. "We want nanobodies that bind tightly to SARS-CoV-2, and with this method we can get a drug-quality nanobody that is up to 10,000 times more potent."

As with McLellan's research, Shi's experiment began with a llama, this one named Wally because he resembles (and therefore shares a name with) his black Labrador. The team immunized Wally against SARS-CoV-2, waiting two months for nanobodies to be generated, and then Xiang used their new method to analyze the nanobodies, identify and quantify them. They ended up with 10 million nanobody sequences.

These nanobodies can sit at room temperature for six weeks, and are small enough that they can be aerosolized, meaning therapeutics designed from them can be inhaled directly to the lungs instead of moving through the bloodstream. To confirm the nanobodies' effectiveness, Cheng Zhang, assistant professor at the University of Pittsburgh, determined structures of the nanobodies bound to the SARS-CoV-2 virus at the National Institute of General Medical Sciences and National Cancer Institute Structural Biology Facility (GM/CA) at the APS.

"With this method we can discover thousands of distinct, ultrahigh-affinity nanobodies for specific antigen binding," Shi said. "These nanobodies may or may not provide a treatment for COVID-19, but the technology used to isolate them will be important in the future."

Most recently, a team of scientists led by the University of Bonn in Germany reported newly discovered nanobodies that bind to SARS-CoV-2 and may prevent what is called "mutational escape." That's the ability of a virus to avoid immune responses by mutating, and a treatment that prevents the virus from doing so would guard against reinfection.

This research team combined several nanobodies into molecules that attack different parts of the virus simultaneously, helping to prevent virus mutations from reducing therapeutic effectiveness. These nanobodies were taken from a llama and an alpaca immunized against the SARS-CoV-2 virus, and out of several million candidates they ended up with four molecules that proved to be effective.

Ian Wilson, professor of structural biology at the Scripps Research Institute in California, led the team that conducted X-ray diffraction studies at GM/CA at the APS to determine structures of these molecules bound to the virus.

"From crystal structures determined from data collected at APS and the Stanford Synchrotron Radiation Lightsource (SSRL), we were able to identify the binding sites of the nanobodies on the SARS-CoV-2 receptor binding domain," Wilson said. "The X-ray structural information, combined with cryo-electron microscopy data, was used to help design even more potent multivalent antibodies to prevent COVID-19 infection. The X-ray structural work was greatly facilitated by immediate access to the APS."

Only time (and further tests) will tell whether the various nanobodies will translate into effective treatments against COVID-19. But if they do, we'll have the lovable llama to thank for it. 

The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory. Additional funding for beamlines used for COVID-19 research at the APS is provided by the National Institutes of Health (NIH) and by DOE Office of Science Biological and Environmental Research. The APS operated for 10 percent more hours in 2020 than usual to support COVID-19 research, with the additional time supported by the DOE Office of Science through the National Virtual Biotechnology Laboratory, a consortium of DOE national laboratories focused on response to COVID-19 with funding provided by the Coronavirus CARES Act.

INFORMATION:

About the Advanced Photon Source

The U. S. Department of Energy Office of Science's Advanced Photon Source (APS) at Argonne National Laboratory is one of the world's most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation's economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.



ELSE PRESS RELEASES FROM THIS DATE:

Therapy sneaks into hard layer of pancreatic cancer tumor and destroys it from within

Therapy sneaks into hard layer of pancreatic cancer tumor and destroys it from within
2021-03-09
Every 12 minutes, someone in the United States dies of pancreatic cancer, which is often diagnosed late, spreads rapidly and has a five-year survival rate at approximately 10 percent. Treatment may involve radiation, surgery and chemotherapy, though often the cancer becomes resistant to drugs. Researchers at University of California San Diego School of Medicine and Moores Cancer Center, in collaboration with Sanford-Burnham-Prebys Medical Discovery Institute and Columbia University, demonstrated that a new tumor-penetrating therapy, tested in animal models, may enhance the effects of chemotherapy, reduce metastasis ...

Researchers modify air quality models to reflect polluted reality in Latin America

Researchers modify air quality models to reflect polluted reality in Latin America
2021-03-09
Computational models of air quality have long been used to shed light on pollution control efforts in the United States and Europe, but the tools have not found widespread adoption in Latin America. New work from North Carolina State University and Universidad de La Salle demonstrates how these models can be adapted to offer practical insights into air quality challenges in the Americas outside the U.S. Computational air quality models can be used in multiple ways. For example, they can be used to determine which sources are responsible for what fraction of air pollution. They can also help authorities predict how air pollution might change if different pollution control methods are adopted. "Historically, it's been very challenging to apply these modeling ...

Recyclable bioplastic membrane to clear oil spills from water

Recyclable bioplastic membrane to clear oil spills from water
2021-03-09
Polymer scientists from the University of Groningen and NHL Stenden University of Applied Sciences, both in the Netherlands, have developed a polymer membrane from biobased malic acid. It is a superamphiphilic vitrimer epoxy resin membrane that can be used to separate water and oil. This membrane is fully recyclable. When the pores are blocked by foulants, it can be depolymerized, cleaned and subsequently pressed into a new membrane. A paper describing the creation of this membrane was published in the journal Advanced Materials on 7 March 2021. How do you clean up an oil spill in ...

March/April 2021 Annals of Family Medicine Tip Sheet

2021-03-09
Study Reveals New Hope for Men With Common Urinary Issues A new systematic review of evidence recommends the use of behavioral self-management treatments for common urinary issues experienced by upwards of 70 percent of older men. Common symptoms include trouble urinating, increased frequency and incontinence. These symptoms can have a substantial negative impact on sleep, social functioning and quality of life. Several guidelines recommend self-management techniques like health education, advice on fluid intake, and bladder retraining; however, in practice, self-management is often excluded from the menu of treatment options that include medication and surgery. Researchers at Bond University's Institute for Evidence-Based Healthcare found that ...

The neoliberal city needs to change, argues Concordia professor Meghan Joy

The neoliberal city needs to change, argues Concordia professor Meghan Joy
2021-03-09
What would a truly progressive city look like? A city that pays more than lip service to issues that directly affect low-income residents, seniors, marginalized communities and others whom neoliberal policies have seemingly left behind? ...

Unveiling the cause of onion center rot

Unveiling the cause of onion center rot
2021-03-09
Since 1983, the bacteria Pantoea ananatis has been known to infect several important crops including onions, rice, and corn. It was unclear, however, what molecules were involved. A new study, published in mBio, has identified one of the culprits: pantaphos. Intriguingly, the researchers have discovered that pantaphos can also act as an herbicide and it is toxic to glioblastoma cells, making it an exciting candidate for agricultural and biomedical applications. "Herbicide resistant weeds are an issue in agriculture," said William Metcalf (MMG leader), a professor of microbiology. "Unfortunately, there hasn't been a new class of herbicide ...

Evidence review examines both benefits and harms for lung cancer screening

Evidence review examines both benefits and harms for lung cancer screening
2021-03-09
CHAPEL HILL, NC -- A comprehensive review by University of North Carolina researchers and colleagues of hundreds of publications, incorporating more than two dozen articles on prevention screening for lung cancer with low-dose spiral computed tomography (LDCT), shows there are both benefits and harms from screening. The review is published in JAMA on March 9, 2021. The results of the decadelong National Lung Screening Trial (NLST) showed that LDCT could detect lung cancer better than conventional X-rays in current or previous heavy smokers. Based on those results, the United States Preventive Services ...

Strategic air purifier placement reduces virus spread within music classrooms

2021-03-09
WASHINGTON, March 9, 2021 -- The University of Minnesota School of Music was concerned about one-on-one teaching during the COVID-19 pandemic and wondered if it should supplement its ventilation system with portable HEPA air purifiers. So, school officials reached out to Suo Yang, a professor within the College of Science and Engineering, and his team to figure it out. In Physics of Fluids, from AIP Publishing, Yang and the researchers describe their work to predict how virus particles spread within a music classroom. "The airborne transmission of COVID-19 through ...

Younger Tyrannosaurus Rex bites were less ferocious than their adult counterparts

Younger Tyrannosaurus Rex bites were less ferocious than their adult counterparts
2021-03-09
By closely examining the jaw mechanics of juvenile and adult tyrannosaurids, some of the fiercest dinosaurs to inhabit earth, scientists led by the University of Bristol have uncovered differences in how they bit into their prey. They found that younger tyrannosaurs were incapable of delivering the bone-crunching bite that is often synonymous with the Tyrannosaurus Rex and that adult specimens were far better equipped for tearing out chunks of flesh and bone with their massive, deeply set jaws. The team also found that tension from the insertion of the lower pterygoid muscle is linked to decreasing stresses near the front of the typical tyrannosaur jaw, where the animals may have applied their highest impact bite ...

Irradiating COVID-19 cough droplets with UV-C lamps

Irradiating COVID-19 cough droplets with UV-C lamps
2021-03-09
WASHINGTON, March 9, 2021 -- One of the primary ways the COVID-19 virus is transmitted is via airborne diffusion of saliva microdroplets, so it is paramount to find methods to kill the virus in airborne microdroplets. The extreme confusion that abounded at the beginning of the pandemic about safe social distances, mask wearing, and social behavior inspired Marche Polytechnic University researchers, who happen to be intrigued by saliva droplet diffusion, to search for answers and ways to help. In Physics of Fluids, from AIP Publishing, Valerio D'Alessandro and colleagues describe using a supercomputer to do numerical modeling ...

LAST 30 PRESS RELEASES:

Jumping workouts could help astronauts on the moon and Mars, study in mice suggests

Guardian molecule keeps cells on track – new perspectives for the treatment of liver cancer

Solar-powered device captures carbon dioxide from air to make sustainable fuel

Bacteria evolved to help neighboring cells after death, new research reveals

Lack of discussion drives traditional gender roles in parenthood

Scientists discover mechanism driving molecular network formation

Comprehensive global study shows pesticides are major contributor to biodiversity crisis

A simple supplement improves survival in patients with a new type of heart disease

Uncovering novel transcriptional enhancers in neuronal development and neuropsychiatric disorders

IR Sant Pau study reveals immune system’s crucial role in ALS at cellular level

Brain rhythms can predict seizure risk of Alzheimer’s disease patients, study finds

Scientists develop innovative DNA hydrogels for sustained drug release

Paramedics facing challenging end-of-life care demands

Worm study shows hyperactivated neurons cause aging-related behavioral decline

Combining millions of years of evolution with tech wizardry: the cyborg cockroach

Discrimination can arise from individual, random difference, study finds

Machine learning boosts accuracy of solar power forecasts

Researchers create chemotaxic biomimetic liquid metallic leukocytes with versatile behavior

Beyond DNA: How environments influence biology to make things happen

Alarming gap on girls’ sport contributes to low participation rates

New study adds to evidence of stroke and heart attack risk with some hormonal contraceptives

Can artificial intelligence save the Great Barrier Reef?

Critical thinking training can reduce belief in conspiracy theories

Babies respond positively to smell of foods experienced in the womb

New blood-clotting disorder identified by McMaster University researchers

Vitamin E succinate controls tumor growth and enhances immunotherapy effects

University of Tennessee physicist named Cottrell Scholar

Simple, quick test can predict fall risk in older adults six months in advance

Mass General Brigham researchers awarded ARPA-H funding to enhance health outcomes in rural America

Semaglutide shows promise in reducing cravings for alcohol, heavy drinking

[Press-News.org] Why the lovable llama might be a secret weapon against COVID-19