PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Of mice and men and their different tolerance to pathogens

A mouse intestine-on-chip discovery platform enables the modeling of host-microbiome relations, infectious disease modeling, and the identification of tolerance-promoting species

Of mice and men and their different tolerance to pathogens
2021-03-15
(Press-News.org) (BOSTON) ¬-- Trillions of commensal microbes live on the mucosal and epidermal surfaces of the body and it is firmly established that this microbiome affects its host's tolerance and sensitivity of the host to a variety of pathogens. However, host tolerance to infection with pathogens is not equally developed in all organisms. For example, it is known that the gut microbiome of mice protects more effectively against infection with certain pathogens, such as the bacterium Salmonella typhimurium, than the human gut microbiome.

This raises the interesting possibility that analyzing differences between host-microbiome interactions in humans and other species, such as mice, and pinpointing individual types of bacterial that either protect or sensitize against certain pathogens, could lead to entirely new types of therapeutic approaches. However, while the intestinal microbiome composition and its effect on host immune responses have been well investigated in mice, it is not possible to study how the microbiome interacts directly with the epithelial cells lining the intestine under highly defined conditions, and thereby uncover specific bacterial strains that can induce host-tolerance to infectious pathogens.

Now, a collaborative team led by Wyss Founding Director Donald Ingber, M.D., Ph.D. at Harvard's Wyss Institute for Biologically Inspired Engineering and Dennis Kasper, M.D. at Harvard Medical School (HMS) has harnessed the Wyss's microfluidic Organs-on-Chip (Organ Chip) technology to model the different anatomical sections of the mouse intestine and their symbiosis with a complex living microbiome in vitro. The researchers recapitulated the destructive effects of S. typhimurium on the intestinal epithelial surface in an engineered mouse Colon Chip, and in a comparative analysis of mouse and human microbiomes were able to confirm the commensal bacterium Enterococcus faecium contributes to host tolerance to S. typhimurium infection. The study is published in Frontiers in Cellular and Infection Microbiology.

The project was started under a DARPA-supported "Technologies for Host Resilience" (THoR) Project at the Wyss Institute, whose goal it was to uncover key contributions to tolerance to infection by studying differences observed in certain animal species and humans. Using a human Colon Chip, Ingber's group had shown in a previous study how metabolites produced by microbes derived from mouse and human feces have different potential to impact susceptibility to infection with an enterohemorrhagic E. coli pathogen.

"Biomedical research strongly depends on animal models such as mice, which undoubtedly have tremendous benefits, but do not provide an opportunity to study normal and pathological processes within a particular organ, such as the intestine, close-up and in real-time. This important proof-of-concept study with Dennis Kasper's group highlights that our engineered mouse Intestine Chip platform offers exactly this capability and provides the possibility to study host-microbiome interactions with microbiomes from different species under highly controllable conditions in vitro," said Ingber. "Given the deep level of characterization of mouse immunology, this capability could greatly help advance the work of researchers who currently use these animals to do research on microbiome and host responses. It enables them to compare their results they obtain directly with human Intestine Chips in the future so that the focus can be on identifying features of host response that are most relevant for humans." Ingber also is the Judah Folkman Professor of Vascular Biology at HMS and Boston Children's Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

Engineering a mouse Intestine-on-Chip platform

In their new study, the team focused on the mouse intestinal tract. "It has traditionally been extremely difficult to model host-microbiome interactions outside any organism as many bacteria are strictly anaerobic and die in normal atmospheric oxygen conditions. Organ Chip technology can recreate these conditions, and it is much easier to obtain primary intestinal and immune cells from mice than having to rely on human biopsies," said first-author Francesca Gazzaniga, Ph.D., a Postdoctoral Fellow who works between Ingber's and Kasper's groups and spear-headed the project.

Gazzaniga and her colleagues isolated intestinal crypts from different regions of the mouse intestinal tract, including the duodenum, jejunum, ileum, and colon, took their cells through an intermediate "organoid" step in culture in which small tissue fragments form and grow, which they then seeded into one of two parallel microfluidically perfused channels of the Wyss' Organ Chips to create region-specific Intestine Chips. The second independently perfused channel mimics the blood vasculature, and is separated from the first by a porous membrane that allows the exchange of nutrients, metabolites, and secreted molecules that intestinal epithelial cells use to communicate with vascular and immune cells.

Homing in on the pathogen

The team then honed in on S. typhimurium as a pathogen. First, they introduced the pathogen into the epithelial lumen of the engineered mouse Colon Chip and recapitulated the key features associated with the break-down of intestinal tissue integrity known from mouse studies, including the disruption of normally tight adhesions between neighboring epithelial cells, decreased production of mucus, a spike in secretion of a key inflammatory chemokine (the mouse homolog of human IL-8), and changes in epithelial gene expression. In parallel, they showed that the mouse Colon Chip supported the growth and viability of complex bacterial consortia normally present in mouse and human gut microbiomes.

Putting these capabilities together, the researchers compared the effects of specific mouse and human microbial consortia that had previously been maintained stably in the intestines of 'gnotobiotic' mice that were housed in germ-free conditions by the Kasper team. By collecting complex microbiomes from the stool of those mice, and then inoculating them into the Colon Chips, the researchers observed chip-to-chip variability in consortium composition, which enabled them to relate microbe composition to functional effects on the host epithelium. "Using 16s sequencing gave us a good sense of the microbial compositions of the two consortia, and high numbers of one individual species, Enterococcus faecium, generated by only one of them in the Colon Chip, allowed the intestinal tissue to better tolerate the infection," said Gazzaniga. "This nicely confirmed past findings and validated our approach as a new discovery platform that we can now use to investigate the mechanisms that underlie these effects as well as the contribution of vital immune cell contributions to host-tolerance, as well as infectious processes involving other pathogens."

"The mouse intestine on a chip technology provides a unique approach to understand the relationship between the gut microbiota, host immunity, and a microbial pathogen. This important interrelationship is challenging to study in the living animal because there are so many uncontrollable factors. The beauty of this system is that essentially all parameters you wish to study are controllable and can easily be monitored. This system is a very useful step forward," said Kasper, who is the William Ellery Channing Professor of Medicine and Professor of Immunology at HMS.

The researchers believe that their comparative in vitro approach could uncover specific cross-talk between pathogens and commensal bacteria with intestinal epithelial and immune cells, and that identified tolerance-enhancing bacteria could be used in future therapies, which may circumvent the problem increasing antimicrobial resistance of pathogenic bacterial strains.

INFORMATION:

By Benjamin Boettner

The study was also authored by former and present Wyss Institute researchers Diogo Camacho, Ph.D., Alexandre Dinis, Francis Grafton, Mark Cartwright, Ph.D., and Michael Super, Ph.D.; and Meng Wu, Ph.D., and Matheus Palazzo in Kasper's group. It was supported by DARPA THoR grant under award# W911NF-16-C-0050.

PRESS CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard University Benjamin Boettner, benjamin.boettner@wyss.harvard.edu, +1 617-432-8232

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.


[Attachments] See images for this press release:
Of mice and men and their different tolerance to pathogens

ELSE PRESS RELEASES FROM THIS DATE:

Discovery of 'knock-on chemistry' opens new frontier in reaction dynamics

Discovery of knock-on chemistry opens new frontier in reaction dynamics
2021-03-15
TORONTO, ON - Research by a team of chemists at the University of Toronto, led by Nobel Prize-winning researcher John Polanyi, is shedding new light on the behaviour of molecules as they collide and exchange atoms during chemical reaction. The discovery casts doubt on a 90-year old theoretical model of the behavior of the "transition state", intermediate between reagents and products in chemical reactions, opening a new area of research. The researchers studied collisions obtained by launching a fluorine atom at the centre of a fluoromethyl molecule - made up of one carbon atom and three fluorine atoms - and observed the resulting reaction using Scanning Tunneling Microscopy. What they saw following each collision ...

Fingerprints enhance our sense of touch

Fingerprints enhance our sense of touch
2021-03-15
Fingerprints may be more useful to us than helping us nab criminal suspects: they also improve our sense of touch. Sensory neurons in the finger can detect touch on the scale of a single fingerprint ridge, according to new research published in JNeurosci. The hand contains tens of thousands of sensory neurons. Each neuron tunes in to a small surface area on the skin -- a receptive field -- and detects touch, vibration, pressure, and other tactile stimuli. The human hand possesses a refined sense of touch, but the exact sensitivity of a single sensory neuron has not been studied before. To ...

Is there an association between a pregnant mother's diet and her child's weight?

2021-03-15
Key Points 19.3% of children and adolescents in the United States have obesity and therefore have a higher likelihood of having obesity as adults and developing weight-related diseases. This AJCN study assessed how strongly mothers' diets during pregnancy were associated with their children's growth rates during specific periods from birth through adolescence. Study results suggest maternal nutrition during pregnancy may influence her offspring's weight gain during specific periods from birth to adolescence. A pregnancy diet with higher inflammatory potential was associated with accelerated BMI growth trajectories in children, specifically those between three and ten years of age. Rockville, ...

European summer droughts since 2015 unprecedented in past two millennia

European summer droughts since 2015 unprecedented in past two millennia
2021-03-15
Recent summer droughts in Europe are far more severe than anything in the past 2,100 years, according to a new study. An international team, led by the University of Cambridge, studied the chemical fingerprints in European oak trees to reconstruct summer climate over 2,110 years. They found that after a long-term drying trend, drought conditions since 2015 suddenly intensified, beyond anything in the past two thousand years. This anomaly is likely the result of human-caused climate change and associated shifts in the jet stream. The results are reported in the journal Nature Geoscience. Recent summer droughts and heatwaves in Europe have had devastating ecological and economic consequences, which will worsen as the global climate continues to warm. "We're ...

Saarbrücken based bioinformaticians trace down molecular signals of Parkinson's disease

Saarbrücken based bioinformaticians trace down molecular signals of Parkinsons disease
2021-03-15
In their study, which is now published in the journal Nature Aging, they show that the level of non-coding RNAs in the blood of a Parkinson's patient can be used to track the course of the disease. For their study, the team led by bioinformatics professor Andreas Keller and his doctoral student Fabian Kern created and analyzed the molecular profiles of more than 5,000 blood samples from over 1,600 Parkinson's patients. This resulted in around 320 billion data points, which the researchers analyzed for biomarkers of Parkinson's disease using artificial intelligence methods. ...

Twisting, flexible crystals key to solar energy production

Twisting, flexible crystals key to solar energy production
2021-03-15
DURHAM, N.C. -- Researchers at Duke University have revealed long-hidden molecular dynamics that provide desirable properties for solar energy and heat energy applications to an exciting class of materials called halide perovskites. A key contributor to how these materials create and transport electricity literally hinges on the way their atomic lattice twists and turns in a hinge-like fashion. The results will help materials scientists in their quest to tailor the chemical recipes of these materials for a wide range of applications in an environmentally friendly way. The results appear online March 15 in the journal Nature Materials. "There is a broad ...

Epigenetic mechanism contributing to lifelong stress susceptibility discovered

Epigenetic mechanism contributing to lifelong stress susceptibility discovered
2021-03-15
An epigenetic modification that occurs in a major cell type in the brain's reward circuitry controls how stress early in life increases susceptibility to additional stress in adulthood, researchers at the Icahn School of Medicine at Mount Sinai have learned. In a study in Nature Neuroscience, the team also reported that a small-molecule inhibitor of the enzyme responsible for this modification, currently being developed as an anti-cancer drug, was able to reverse increased vulnerability to lifelong stress in animal models. "It has long been known that stress exposures throughout life control lifelong susceptibility to subsequent stress. Here ...

Machine learning models for diagnosing COVID-19 are not yet suitable for clinical use

2021-03-15
Researchers have found that out of the more than 300 COVID-19 machine learning models described in scientific papers in 2020, none of them is suitable for detecting or diagnosing COVID-19 from standard medical imaging, due to biases, methodological flaws, lack of reproducibility, and 'Frankenstein datasets.' The team of researchers, led by the University of Cambridge, carried out a systematic review of scientific manuscripts - published between 1 January and 3 October 2020 - describing machine learning models that claimed to be able to diagnose or prognosticate ...

Could we recycle plastic bags into fabrics of the future?

Could we recycle plastic bags into fabrics of the future?
2021-03-15
In considering materials that could become the fabrics of the future, scientists have largely dismissed one widely available option: polyethylene. The stuff of plastic wrap and grocery bags, polyethylene is thin and lightweight, and could keep you cooler than most textiles because it lets heat through rather than trapping it in. But polyethylene would also lock in water and sweat, as it's unable to draw away and evaporate moisture. This antiwicking property has been a major deterrent to polyethylene's adoption as a wearable textile. Now, MIT engineers have spun polyethylene into fibers ...

Melting glaciers could speed up carbon emissions into the atmosphere

Melting glaciers could speed up carbon emissions into the atmosphere
2021-03-15
The loss of glaciers worldwide enhances the breakdown of complex carbon molecules in rivers, potentially contributing further to climate change. An international research team led by the University of Leeds has for the first time linked glacier-fed mountain rivers with higher rates of plant material decomposition, a major process in the global carbon cycle. As mountain glaciers melt, water is channelled into rivers downstream. But with global warming accelerating the loss of glaciers, rivers have warmer water temperatures and are less prone to variable water flow and sediment movement. These conditions are then much more favourable for fungi to establish and ...

LAST 30 PRESS RELEASES:

Understanding bias and discrimination in AI: Why sociolinguistics holds the key to better Large Language Models and a fairer world 

Safe and energy-efficient quasi-solid battery for electric vehicles and devices

Financial incentives found to help people quit smoking, including during pregnancy

Rewards and financial incentives successfully help people to give up smoking

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

[Press-News.org] Of mice and men and their different tolerance to pathogens
A mouse intestine-on-chip discovery platform enables the modeling of host-microbiome relations, infectious disease modeling, and the identification of tolerance-promoting species