PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

The blast that shook the ionosphere

The blast that shook the ionosphere
2021-03-17
(Press-News.org) A 2020 explosion in Lebanon's port city of Beirut led to a southward-bound, high-velocity atmospheric wave that rivaled ones generated by volcanic eruptions.

Just after 6 p.m. local time (15.00 UTC) on August 4, 2020, more than 2,750 tons worth of unsafely stored ammonium nitrate exploded in Lebanon's port city of Beirut, killing around 200 people, making more than 300,000 temporarily homeless, and leaving a 140-metre-diameter crater in its wake. The blast is considered one of the most powerful non-nuclear, man-made explosions in human history.

Now, calculations by Hokkaido University scientists in Japan have found that the atmospheric wave from the blast led to electron disturbances high in Earth's upper atmosphere. They published their findings in the journal Scientific Reports.

The team of scientists, which included colleagues from the National Institute of Technology Rourkela in India, calculated changes in total electron content in Earth's ionosphere: the part of the atmosphere from around 50 to 965 kilometres in altitude. Natural events like extreme ultraviolet radiation and geomagnetic storms, and man-made activities like nuclear tests, can cause disturbances to the ionosphere's electron content.

"We found that the blast generated a wave that travelled in the ionosphere in a southwards direction at a velocity of around 0.8 kilometres per second," says Hokkaido University Earth and Planetary scientist Kosuke Heki. This is similar to the speed of sound waves travelling through the ionosphere.

The team calculated changes in ionospheric electron content by looking at differences in delays experienced by microwave signals transmitted by GPS satellites to their ground stations. Changes in electron content affect these signals as they pass through the ionosphere and must be regularly taken into consideration to accurately measure GPS positions.

The scientists also compared the magnitude of the ionospheric wave generated by the Beirut blast to similar waves following natural and anthropogenic events. They found that the wave generated by the Beirut blast was slightly larger than a wave generated by the 2004 eruption of Asama Volcano in central Japan, and comparable to ones that followed other recent eruptions on Japanese islands.

The energy of the ionospheric wave generated by the Beirut blast was significantly larger than a more energetic explosion in a Wyoming coal mine in the USA in 1996. The Beirut blast was equivalent to an explosion of 1.1 kilotons of TNT, while the Wyoming explosion was equivalent to 1.5 kilotons of TNT. The total electron content disturbance of the Wyoming explosion was only 1/10 of that caused by the Beirut blast. The scientists believe this was partially due to the Wyoming mine being located in a somewhat protected pit.

INFORMATION:


[Attachments] See images for this press release:
The blast that shook the ionosphere

ELSE PRESS RELEASES FROM THIS DATE:

Examining the value of lumbar spine surgery

2021-03-17
PHILADEPHIA - Since the 1990s the rate of spinal fusion to treat lower back pain has been on the rise. A new prospective clinical study published in the journal Neurosurgery, the official journal of the Congress of Neurological Surgeons, found that lumbar fusions were three times more likely to be effective and obtain better patient outcomes, when guidelines for fusion were followed. The results suggest that when surgeons operate outside of what the evidence based literature suggests, patients may not have significant improvements in their quality of life and could have increased pain or other limitations. "Unfortunately, we don't know how many lumbar fusion surgeries are ...

Researchers provide complete clinical landscape for gene linked to epilepsy and autism

2021-03-17
Philadelphia, March 17, 2021 - Researchers from Children's Hospital of Philadelphia (CHOP) affiliated with the CHOP Epilepsy Neurogenetics Initiative (ENGIN) have compiled a complete genetic and clinical analysis of more than 400 individuals with SCN2A-related disorder, which has been linked to a variety of neurodevelopmental disorders, including epilepsy and autism. By linking clinical features to genetic abnormalities in a standardized format, the researchers hope their findings lead to improved identification and clinical intervention. The study was published ...

Pioneering study gives new insight into formation of copper deposits

2021-03-17
A groundbreaking study has given new insights into how copper deposit-forming fluids are transported naturally from their source deep underground towards the Earth's surface. A team of geologists, led by Lawrence Carter from the University of Exeter's Camborne School of Mines, has published a new theory for how porphyry copper deposits form. Porphyry deposits provide around 75 per cent of the world's copper which is in increasing demand for electric vehicles, power infrastructure and green technologies such as wind turbines. They originally develop several kilometres below the Earth's surface above large magma chambers. Not only are porphyry deposits rare but most large near-surface examples have already been ...

Go with the flow: New model helps cities crack bottlenecks, decrease commute times

2021-03-17
A world-first 'flow model' devised by Australian researchers could drastically slash public transport commuter times during peak periods on some of the busiest roads in major cities, new research shows. When this flow model was implemented to improve the worst traffic bottlenecks across Melbourne, commuters saved close to 2000 hours of travel time during a single morning peak period (7am-9am) and approximately 11,000 hours of passenger travel time during a normal weekday. Ameliorating major traffic bottlenecks also contributed to a more than 23 per cent improvement in reliability of Melbourne's public transport network, ...

New quantum algorithm surpasses the QPE norm

New quantum algorithm surpasses the QPE norm
2021-03-17
OSAKA, Japan. Quantum computers have seen a lot attention recently as they are expected to solve certain problems that are outside the capabilities of normal computers. Primary to these problems is determining the electronic states of atoms and molecules so they can be used more effectively in a variety of industries - from lithium-ion battery designs to in silico technologies in drug development. A common way scientists have approached this problem is by calculating the total energies of the individual states of a molecule or atom and then determine the difference in energy between these states. In nature, many molecules grow in size and complexity, and the cost to calculate this constant flux is beyond the capability of any traditional ...

Glass crystallization making red phosphor for high-power warm white lighting

Glass crystallization making red phosphor for high-power warm white lighting
2021-03-17
High-power laser diode (LD) driven solid-state lighting can generate super-high luminance far exceeding the state-of-art light-emitting diodes (LEDs) source by factors of 2-10, enabling it particularly attractive for automotive headlamp, outdoor lighting, multimedia projectors, laser TVs and so on. Whereas, the thermal shock of laser is extreme, and under intense laser excitation, traditional LEDs phosphor would suffer from luminescence degradation or even failure due to the luminescence saturation. Aiming to overcome this deficiency, highly efficient and stable luminescence bulk phosphors including single crystal, polycrystalline ceramic phosphor and glass ceramic composite phosphor ...

A new satellite-measured "Solar-induced Chlorophyll Fluorescence" (SIF) product aims to improve carbon neutrality research

A new satellite-measured Solar-induced Chlorophyll Fluorescence (SIF) product aims to improve carbon neutrality research
2021-03-17
Solar-induced chlorophyll fluorescence (SIF) is emitted during plant photosynthesis. SIF results from vegetation chlorophyll giving off red and infrared light wavelengths when excited by solar radiation. Measuring SIF is important because it is closely related to the terrestrial gross primary productivity (GPP), which calculates the total amount of carbon dioxide fixed through photosynthesis in a given area. According to many laboratory and field experiments, studies show that SIF can effectively improve estimations of GPP, which is necessary for global carbon sink research and carbon mitigation strategies. China has committed to carbon neutrality by 2060. Technological upgrades and energy structure adjustments through the next four decades will be vital to reducing carbon ...

South African Oxford AstraZeneca Covid-19 vaccine study a global game-changer

2021-03-17
This is a landmark study in so far as being the first to raise the alarm that, despite early successes with Covid-19 vaccines, further research is warranted on a next generation of Covid-19 vaccines. The results from this study, however, only indicate that the AstraZeneca vaccine does not have at least 60% efficacy against mild-moderate Covid-19 due to the B.1.351 (N501Y.V2) variant. Based on a broader body of evidence, the World Health Organization recommends that this vaccine still be deployed in countries where the B.1.351 variant circulates, as it likely still protects against severe ...

Trackable and guided 'nanomissiles' deliver cancer-fighting drug straight to the tumor

2021-03-17
Researchers from Skoltech and their colleagues from Hadassah Medical Center have developed hybrid nanostructured particles that can be magnetically guided to the tumor, tracked by their fluorescence and pushed to release the drug on demand by ultrasound. This technology can help make cancer chemotherapy more targeted. The paper was published in the journal Colloids and Surfaces B: Biointerfaces.Current treatments for cancer include chemotherapy, immunotherapy, radiation, and surgery, but these are often not selective enough to target just the tumor ...

Cu-based small-pore zeolites for deNOx

Cu-based small-pore zeolites for deNOx
2021-03-17
The diesel engine is the backbone of transportation due to its irreplaceability as the primary power source for the freight, navigation and marine engine industries and non-road engineering machinery for the foreseeable future. However, the control of contaminants from fuel combustion has become an urgent global concern. Nitrogen oxides are the primary pollutants from transportation and can contribute to the formation of haze, photochemical smog and acid rain. Selective catalytic reduction of NOx with ammonia (NH3-SCR) technology has been successfully and commercially applied for controlling pollution from diesel vehicle exhaust. The development of ...

LAST 30 PRESS RELEASES:

New study reveals key role of inflammasome in male-biased periodontitis

MD Anderson publicly launches $2.5 billion philanthropic campaign, Only Possible Here, The Campaign to End Cancer

Donors enable record pool of TPDA Awards to Neuroscience 2025

Society for Neuroscience announces Gold Sponsors of Neuroscience 2025

The world’s oldest RNA extracted from woolly mammoth

Research alert: When life imitates art: Google searches for anxiety drug spike during run of The White Lotus TV show

Reading a quantum clock costs more energy than running it, study finds

Early MMR vaccine adoption during the 2025 Texas measles outbreak

Traces of bacteria inside brain tumors may affect tumor behavior

Hypertension affects the brain much earlier than expected

Nonlinear association between systemic immune-inflammation index and in-hospital mortality in critically ill patients with chronic obstructive pulmonary disease and atrial fibrillation: a cross-sectio

Drift logs destroying intertidal ecosystems

New test could speed detection of three serious regional fungal infections

New research on AI as a diagnostic tool to be featured at AMP 2025

New test could allow for more accurate Lyme disease diagnosis

New genetic tool reveals chromosome changes linked to pregnancy loss

New research in blood cancer diagnostics to be featured at AMP 2025

Analysis reveals that imaging is overused in diagnosing and managing the facial paralysis disorder Bell’s palsy

Research progress on leptin in metabolic dysfunction-associated fatty liver disease

Fondazione Telethon announces CHMP positive opinion for Waskyra™, a gene therapy for the treatment of Wiskott-Aldrich syndrome (WAS)

Vaccine Innovation Center, Korea University College of Medicine hosts an invited training program for Ethiopian Health Ministry officials

FAU study finds small group counseling helps children thrive at school

Research team uncovers overlooked layer of DNA that may shape disease risk

Study by Incheon National University could transform skin cancer detection with near-perfect accuracy

New study reveals how brain fluid flow predicts survival in glioblastoma

Cesarean delivery: the technique used for closing the uterus must be reconsidered

The “Great Unified Microscope” can see both micro and nanoscale structures

A new theory of molecular evolution

AI at the speed of light just became a possibility

Researchers identify mangrove tree stems as previously underestimated methane source offsetting blue carbon benefits

[Press-News.org] The blast that shook the ionosphere