PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

FAU researchers break bonds in molecular nitrogen with calcium

New findings in fundamental research

2021-03-17
(Press-News.org) Chemists all over the world are constantly searching for simple ways to make elemental nitrogen or N2 in the air available for chemical reactions. This is no easy task, as nitrogen is a particularly non-reactive gas with a triple bond, which is one of the strongest known chemical bonds. A research team at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now demonstrated that calcium, a metal commonly found in nature, is able to break the highly-stable nitrogen bond and can do so at minus 60°C. This is significant for two reasons. On the one hand, the researchers at FAU have made a new discovery in terms of the bond-breaking capabilities of calcium, which had been largely disregarded in the past. On the other hand, their findings could form the basis for developing industrial processes in the future.

Nitrogen is one of the main components of air and is in unlimited supply. It is also used as an inert gas for protecting food due to its particularly low chemical reactivity and it can keep products such as part-baked rolls fresh for months. Plants also require nitrogen for growth. However, they cannot use nitrogen directly from the air. The greatest challenge lies in converting the highly-stable diatomic molecule N2 into useful chemicals. Two German chemists succeeded in doing so in the early 1900s when they developed the Haber-Bosch process, which converts N2 into ammonia (NH3). Whilst ammonia was originally used to manufacture explosives, today it is mostly used as a fertiliser. In the Haber-Bosch process, a transition metal catalyst triggers the chemical reaction. Conversion of highly-stable nitrogen into ammonia requires high pressures and high temperatures, which means Haber's 'bread from the air' process requires large amounts of energy.

Chemists are looking for other methods of breaking the strong N?N triple bond to simplify this and other processes. The team of researchers led by Prof. Dr. Sjoerd Harder, Chair of Inorganic and Organometallic Chemistry at FAU, have now successfully demonstrated that the main group element calcium is capable of achieving this feat. Calcium is a metal commonly found in nature mainly in limestone, which had been regarded in the past as not being capable of breaking strong chemical bonds. Unlike transition metals, which are often toxic, calcium is generally not capable of utilising d orbitals - a wave function with a specific symmetry that facilitates bond breaking reactions.

While searching for calcium atoms in the unusual oxidation level +I, the FAU researchers accidentally discovered that the metal reacts with nitrogen, which was only supposed to be used as an inert gas during the experiment. Harder and his team isolated a molecule that was trapped in the nitrogen between two calcium atoms and were able to continue the conversion to hydrazine. In contrast to nitrogen, which is extremely stable, hydrazine is used as highly-reactive rocket fuel. Working with theoretical chemists at the universities of Marburg in Germany and Nanjing in China, the FAU research team discovered that d orbitals do actually play a significant role in nitrogen activation with calcium. This controversial but significant discovery dispels the dogma that d orbitals are irrelevant for metals assigned to the main group in the periodic system.

Despite the fact that the process is neither catalytic nor economical, it provides new fundamental and important insights into bond breaking reactions with calcium. These findings will not only rewrite students' textbooks, but could also contribute to the development of simplified industrial processes.

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

It's snowing plastic

2021-03-17
The snow may be melting, but it is leaving pollution behind in the form of micro- and nano-plastics according to a McGill study that was recently published in Environmental Pollution. The pollution is largely due to the relatively soluble plastics found in antifreeze products (polyethylene glycols) that can become airborne and picked up by the snow. The researchers used a new technique that they have developed to analyze snow samples collected in April 2019 in Montreal for both micro- and nano-sized particles of various plastics. The McGill technique is orders of magnitude more sensitive than any of the other current methods used for tracing plastic in the environment. It ...

Certain mouthwashes might stop COVID-19 virus transmission

2021-03-17
Researchers at Rutgers School of Dental Medicine have found evidence that two types of mouthwash disrupt the COVID-19 virus under laboratory conditions, preventing it from replicating in a human cell. The study, published in the journal Pathogens, found that Listerine and the prescription mouthwash Chlorhexidine disrupted the virus within seconds after being diluted to concentrations that would mimic actual use. Further studies are needed to test real-life efficacy in humans. The study was conducted in a lab using concentrations of the mouthwash ...

Advisory: Study confirms vitamin D, fish oil don't lower atrial fibrillation risk

Advisory: Study confirms vitamin D, fish oil dont lower atrial fibrillation risk
2021-03-17
A study published March 16 in JAMA (the Journal of the American Medical Association) confirms that neither vitamin D nor the omega-3 fatty acids found in fish oil prevent the development of atrial fibrillation (AF), a potentially serious heart rhythm disturbance. The newly published research follows a presentation made by Christine Albert, MD, MPH, at the American Heart Association Scientific Sessions last year. In their JAMA analysis, Albert and her research team also examined whether vitamin D or omega-3 fatty acids might have an impact on paroxysmal versus persistent atrial ...

Semiconductor nanogrooves enhanced broad spectral band mmW and THz detection

Semiconductor nanogrooves enhanced broad spectral band mmW and THz detection
2021-03-17
Millimetre and terahertz wave detectors have a wide range of applications in areas such as communications, security, biological diagnosis, spectroscopy, and remote sensing. They are the components that can transform light information loaded by long-wavelength millimetre and terahertz waves into electrical signals. High-performance room-temperature detectors with high sensitivity, fast response, broad spectral bandwidth, and possibility to be extended to large format arrays are always pursued. They are the building blocks for a wide range of millimetre ...

NUS researchers harness AI to identify cancer cells by their acidity

NUS researchers harness AI to identify cancer cells by their acidity
2021-03-17
Singapore, 17 March 2021 - Healthy and cancer cells can look similar under a microscope. One way of differentiating them is by examining the level of acidity, or pH level, inside the cells. Tapping on this distinguishing characteristic, a research team from the National University of Singapore (NUS) has developed a technique that uses artificial intelligence (AI) to determine whether a single cell is healthy or cancerous by analysing its pH. Each cancer test can be completed in under 35 minutes, and single cells can be classified with an accuracy rate of more than 95 per cent. The research, led by Professor Lim Chwee Teck, Director of the Institute for Health Innovation ...

The blast that shook the ionosphere

The blast that shook the ionosphere
2021-03-17
A 2020 explosion in Lebanon's port city of Beirut led to a southward-bound, high-velocity atmospheric wave that rivaled ones generated by volcanic eruptions. Just after 6 p.m. local time (15.00 UTC) on August 4, 2020, more than 2,750 tons worth of unsafely stored ammonium nitrate exploded in Lebanon's port city of Beirut, killing around 200 people, making more than 300,000 temporarily homeless, and leaving a 140-metre-diameter crater in its wake. The blast is considered one of the most powerful non-nuclear, man-made explosions in human history. Now, calculations by Hokkaido University scientists in Japan have found that the atmospheric ...

Examining the value of lumbar spine surgery

2021-03-17
PHILADEPHIA - Since the 1990s the rate of spinal fusion to treat lower back pain has been on the rise. A new prospective clinical study published in the journal Neurosurgery, the official journal of the Congress of Neurological Surgeons, found that lumbar fusions were three times more likely to be effective and obtain better patient outcomes, when guidelines for fusion were followed. The results suggest that when surgeons operate outside of what the evidence based literature suggests, patients may not have significant improvements in their quality of life and could have increased pain or other limitations. "Unfortunately, we don't know how many lumbar fusion surgeries are ...

Researchers provide complete clinical landscape for gene linked to epilepsy and autism

2021-03-17
Philadelphia, March 17, 2021 - Researchers from Children's Hospital of Philadelphia (CHOP) affiliated with the CHOP Epilepsy Neurogenetics Initiative (ENGIN) have compiled a complete genetic and clinical analysis of more than 400 individuals with SCN2A-related disorder, which has been linked to a variety of neurodevelopmental disorders, including epilepsy and autism. By linking clinical features to genetic abnormalities in a standardized format, the researchers hope their findings lead to improved identification and clinical intervention. The study was published ...

Pioneering study gives new insight into formation of copper deposits

2021-03-17
A groundbreaking study has given new insights into how copper deposit-forming fluids are transported naturally from their source deep underground towards the Earth's surface. A team of geologists, led by Lawrence Carter from the University of Exeter's Camborne School of Mines, has published a new theory for how porphyry copper deposits form. Porphyry deposits provide around 75 per cent of the world's copper which is in increasing demand for electric vehicles, power infrastructure and green technologies such as wind turbines. They originally develop several kilometres below the Earth's surface above large magma chambers. Not only are porphyry deposits rare but most large near-surface examples have already been ...

Go with the flow: New model helps cities crack bottlenecks, decrease commute times

2021-03-17
A world-first 'flow model' devised by Australian researchers could drastically slash public transport commuter times during peak periods on some of the busiest roads in major cities, new research shows. When this flow model was implemented to improve the worst traffic bottlenecks across Melbourne, commuters saved close to 2000 hours of travel time during a single morning peak period (7am-9am) and approximately 11,000 hours of passenger travel time during a normal weekday. Ameliorating major traffic bottlenecks also contributed to a more than 23 per cent improvement in reliability of Melbourne's public transport network, ...

LAST 30 PRESS RELEASES:

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

Resilience index needed to keep us within planet’s ‘safe operating space’

How stress is fundamentally changing our memories

Time in nature benefits children with mental health difficulties: study

In vitro model enables study of age-specific responses to COVID mRNA vaccines

Sitting too long can harm heart health, even for active people

International cancer organizations present collaborative work during oncology event in China

One or many? Exploring the population groups of the largest animal on Earth

ETRI-F&U Credit Information Co., Ltd., opens a new path for AI-based professional consultation

New evidence links gut microbiome to chronic disease outcomes

[Press-News.org] FAU researchers break bonds in molecular nitrogen with calcium
New findings in fundamental research