PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Time-expanded phase-sensitive optical time-domain reflectometry

Time-expanded phase-sensitive optical time-domain reflectometry
2021-03-23
(Press-News.org) Distributed optical fiber sensing (DOFS) is currently a mature technology that allows "transforming" a conventional fiber optic into a continuous array of individual sensors, which are distributed along its length. Between the panoply of techniques developed in the field of DOFS, those based on phase-sensitive optical time-domain reflectometry (ΦOTDR) have gained a great deal of attention, mainly due to their ability to measure strain and temperature perturbations in real time. These unique features, along with other advantages of distributed sensors (reduced weight, electromagnetic immunity and small size) make ΦOTDR sensors an excellent solution for monitoring large infrastructures (like bridges and pipelines), especially when considering that their cost scales inversely to the number of sensing points, and its resolution can achieve a few meters.

In a new paper published in Light Science & Applications, a team of scientists from the University of Alcalá, University Jaume I and the Spanish Research Council (CSIC) presents a novel fiber optic interrogator to conduct ΦOTDR. It is based on a well-known interferometric technique that employs two mutually coherent optical frequency combs. This new interrogator allows strain and/or temperature sensing with resolutions on the cm scale over up to 1 km range (i.e., it provides >104 sensing points distributed along the optical fiber). In view of the reported results, this approach opens up the door for cost-effective DOFS in short range and high-resolution applications, such as structure health monitoring of aerospace components and wellbore production surveillance, which to date have a prohibitive cost.

The technique presented in the paper, called time-extended ΦOTDR (TE-?OTDR), relies on the use of a smartly engineered ultra-dense optical frequency comb to probe a sensing fiber. A weak return signal is then originated by the elastic scattering experienced by the light. This signal is detected by making it interfere with a second comb, which has a bandwidth and spectral phase coding similar to that of the probe, but a different tooth spacing. The result is a multi-heterodyne interference that produces a "time extension" of the detected signals (see Figure). In the frequency domain, this process can be understood as a frequency "down-conversion" (an optical-to-electrical mapping). In the dual-comb scheme developed for DOFS, both combs are generated from the same continuous wave laser, thanks to a couple of electro-optical modulators driven by a single arbitrary waveform generator. Some remarkable features of this scheme are: (i) the flexibility in the design of the combs, which allows the user to achieve the targeted performance for the sensor; (ii) the reduced detection bandwidth (in the sub-megahertz regime for centimeter resolution over 200 meters), which is a consequence of the time-extension experienced by the detected signals; and (iii) the capability of maximizing the power injected into the sensing fiber. This last feature is fundamental to carry out real distributed sensing, given the extreme weakness of the elastic scattering phenomenon. By introducing a controlled random phase profile in the generated combs, the peak power of the optical signals can be minimized, while preserving a high average power to improve the sensor's signal to noise ratio. In addition, the encoded phase is automatically demodulated upon detection, requiring no further post-processing.

"The sensing scheme based on a conventional dual-comb scheme allows us to reach cm-scale resolutions over sensing ranges of a few hundreds of meters, while keeping a measurement rate of tens of hertz. In the paper, we also introduce a strategy to significantly extend the sensing range without reducing the acoustic sampling rate. The basic idea is to employ two frequency combs with very dissimilar tooth spacing, so the generated time signals have quasi-integer-ratio periods. This scheme, previously applied to the field of spectroscopy, makes it possible to measure fibers up to 1 km length with a spatial resolution of 4 cm. This means 25,000 individual sensing points along the fiber. This performance improvement is at the cost of increasing to some extent the detection bandwidth (up to a few megahertz), as well as the complexity of the processing algorithm, although still retaining the fundamental advantages of the method."

"The presented techniques expose a completely new operation arena for dynamic ΦOTDR-based sensors, which was limited to fields requiring sensing along tens of kilometers and meter-scale resolutions to arise as a worthwhile solution. The results demonstrated in the paper are a promising step to design distributed sensor providing fast acquisition speed, small detection bandwidth and sharp spatial resolution", they added.

INFORMATION:


[Attachments] See images for this press release:
Time-expanded phase-sensitive optical time-domain reflectometry

ELSE PRESS RELEASES FROM THIS DATE:

High-performance quasi-2D perovskite light-emitting diodes: from materials to devices

High-performance quasi-2D perovskite light-emitting diodes: from materials to devices
2021-03-23
Light-emitting diodes (LEDs) are changing the lighting and display industry and have obtained significant advances than traditional lighting sources. The traditional materials LEDs, e.g., III-V semiconductor LEDs, organic LEDs (OLEDs) and quantum-dot LEDs (QLEDs), have achieved great success and gradually realized commercialization, but still face some challenges. The OLEDs have the low carrier transport capability and exciton recombination, which would hinder the improvement of brightness. Besides, QLEDs show challenges for the tedious manufacturing process and the reliance on hydrophobic insulating long ligands also hinders their stability and electrical conductivity. Compared with these traditional materials, quasi-2D ...

Dementia death risk is higher among the socioeconomically deprived

2021-03-23
A large proportion of dementia deaths in England and Wales may be due to socioeconomic deprivation, according to new research led by Queen Mary University of London. The team also found that socioeconomic deprivation was associated with younger age at death with dementia, and poorer access to accurate diagnosis. Dementia is the leading cause of death in England and Wales, even during the COVID pandemic, and is the only disease in the top ten causes of death without effective treatment. The research, published in the Journal of Alzheimer's Disease, examines Office for National Statistics mortality data for England and Wales, and finds that in 2017, 14,837 excess dementia deaths were attributable to deprivation, equating to 21.5 per cent of all dementia deaths ...

These baby great white sharks love to hang out near New York

These baby great white sharks love to hang out near New York
2021-03-23
Uncovering detailed travel patterns and habitat use of sharks along and across shelf territories has been historically challenging - especially for most pelagic shark species - which remain offshore for most of their lives. Their vertical diving behavior has been a subject of inquiry for a long time, and for young sharks in particular, has remained elusive. Using cutting-edge 3D satellite technology, a study led by Florida Atlantic University's Harbor Branch Oceanographic Institute, in collaboration with NOAA's National Marine Fisheries Service; OCEARCH; The South Fork Natural History Museum and Nature Center; and the Wildlife Conservation Society, is ...

Variances in critical protein may guide fate of those infected with SARS CoV-2

Variances in critical protein may guide fate of those infected with SARS CoV-2
2021-03-23
Of the many perplexing questions surrounding SARS CoV-2, a mysterious new pathogen that has killed an estimated 2.6 million people worldwide, perhaps the most insistent is this: why does the illness seem to strike in such a haphazard way, sometimes sparing the 100 year old grandmother, while killing healthy young men and women in the prime of life? A new study by Karen Anderson, Abhishek Singharoy and their colleagues at the Biodesign Institute at Arizona State University, may offer some tentative clues. Their research explores MHC-I, a critical protein component of the human adaptive immune system. The research suggests that certain variant ...

Demonstration of unconventional transverse thermoelectric generation

Demonstration of unconventional transverse thermoelectric generation
2021-03-23
A NIMS research team devised a new thermoelectric generation mechanism with a hybrid structure composed of thermoelectric and magnetic materials. The team then actually fabricated this structure and observed the record-high thermopower appearing in the direction perpendicular to a temperature gradient (i.e., transverse thermoelectric generation). These results may offer insights into new mechanisms and structural designs applicable to the development of versatile energy harvesting technologies and highly sensitive heat flux sensors. The Seebeck effect is a phenomenon in which a temperature gradient across a metal or semiconductor is converted into a thermoelectric voltage. Because this effect can be used to convert waste heat into electrical energy, its potential applications (e.g., ...

Aging cells in abdominal fluid cause increased peritoneal dissemination of gastric cancer

Aging cells in abdominal fluid cause increased peritoneal dissemination of gastric cancer
2021-03-23
Through an analysis of cellular components (cell fractions) from malignant ascites (fluid buildup in the abdomen caused by gastric cancer), a research collaboration based in Kumamoto University (Japan) has demonstrated that cellular senescence of cancer-associated fibroblasts (CAFs) play an important role in the peritoneal dissemination of gastric cancer foci (cells different from surrounding cells). This understanding should enable the development of new treatments for cancer dissemination in the peritoneum by targeting cancer cells at focal sites and CAFs in patients with gastric cancer. Peritoneal dissemination ...

Short-lived plant species are more climate-sensitive

2021-03-23
Plant species with short generation times are more sensitive to climate change than those with long generation times. This is one of the findings of a synthesis study by researchers from the German Centre for Integrative Biodiversity Research (iDiv), the Martin Luther University Halle-Wittenberg (MLU) and the Helmholtz-Centre for Environmental Research (UFZ). The international team comprehensively compiled worldwide available data, mostly from Europe and North America, to address the question of how plant populations react to climate change. The study, published in Nature Communications, shows that plant characteristics such as generation ...

Association found between consumption of ultra-processed foods and drinks and colorectal cancer risk

2021-03-23
Consumption of ultra-processed foods and drink could increase the risk of developing colorectal cancer. This was the conclusion of a large study undertaken by the Barcelona Institute for Global Health (ISGlobal), a centre supported by the "la Caixa" Foundation, based on questionnaires about food behaviours completed by around 8,000 people in Spain. The study, the first of its kind in the country, also analysed the relationship between ultra-processed food and drink products and two other cancers; while no association was observed with prostate cancer, in the case of breast cancer a higher risk was observed in the sub-group of former and current smokers who reported a ...

Extroverts and introverts showed differences in mood during early COVID 19 pandemic

Extroverts and introverts showed differences in mood during early COVID 19 pandemic
2021-03-23
More extroverted people suffered mood declines while more introverted people saw mood improvements during the early COVID-19 pandemic, in survey of students at a U.S. university. INFORMATION: Publicly available article: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248895 Article Title: "Personality trait predictors of adjustment during the COVID pandemic among college students" Funding: This work was supported by a grant to Dr. Jim Hudziak from the Conrad Hilton Foundation (https://www.hiltonfoundation.org/). The funders had no role in study design, data collection and analysis, decision ...

Words conveyed with gesture

Words conveyed with gesture
2021-03-23
The question of the origin of the language is one of the most important and at the same time one of the most difficult to solve. It was formulated in antiquity and has inspired religion and philosophy ever since, in some periods, above all the Enlightenment, becoming the axis of reflection on other fundamental issues, such as human nature. In the last few decades, research in this field has intensified, drawing on evolutionism and having an interdisciplinary character, involving linguists, psychologists, primatologists and neuroscientists. The study of language evolution is currently considered one of the most ...

LAST 30 PRESS RELEASES:

Post-LLM era: New horizons for AI with knowledge, collaboration, and co-evolution

“Sloshing” from celestial collisions solves mystery of how galactic clusters stay hot

Children poisoned by the synthetic opioid, fentanyl, has risen in the U.S. – eight years of national data shows

USC researchers observe mice may have a form of first aid

VUMC to develop AI technology for therapeutic antibody discovery

Unlocking the hidden proteome: The role of coding circular RNA in cancer

Advancing lung cancer treatment: Understanding the differences between LUAD and LUSC

Study reveals widening heart disease disparities in the US

The role of ubiquitination in cancer stem cell regulation

New insights into LSD1: a key regulator in disease pathogenesis

Vanderbilt lung transplant establishes new record

Revolutionizing cancer treatment: targeting EZH2 for a new era of precision medicine

Metasurface technology offers a compact way to generate multiphoton entanglement

Effort seeks to increase cancer-gene testing in primary care

Acoustofluidics-based method facilitates intracellular nanoparticle delivery

Sulfur bacteria team up to break down organic substances in the seabed

Stretching spider silk makes it stronger

Earth's orbital rhythms link timing of giant eruptions and climate change

Ammonia build-up kills liver cells but can be prevented using existing drug

New technical guidelines pave the way for widespread adoption of methane-reducing feed additives in dairy and livestock

Eradivir announces Phase 2 human challenge study of EV25 in healthy adults infected with influenza

New study finds that tooth size in Otaria byronia reflects historical shifts in population abundance

nTIDE March 2025 Jobs Report: Employment rate for people with disabilities holds steady at new plateau, despite February dip

Breakthrough cardiac regeneration research offers hope for the treatment of ischemic heart failure

Fluoride in drinking water is associated with impaired childhood cognition

New composite structure boosts polypropylene’s low-temperature toughness

While most Americans strongly support civics education in schools, partisan divide on DEI policies and free speech on college campuses remains

Revolutionizing surface science: Visualization of local dielectric properties of surfaces

LearningEMS: A new framework for electric vehicle energy management

Nearly half of popular tropical plant group related to birds-of-paradise and bananas are threatened with extinction

[Press-News.org] Time-expanded phase-sensitive optical time-domain reflectometry