PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

The case of the cloudy filters: Solving the mystery of the degrading sunlight detectors

The case of the cloudy filters: Solving the mystery of the degrading sunlight detectors
2021-03-25
(Press-News.org) More than 150 years ago, the Sun blasted Earth with a massive cloud of hot charged particles. This plasma blob generated a magnetic storm on Earth that caused sparks to leap out of telegraph equipment and even started a few fires. Now called the Carrington Event, after one of the astronomers who observed it, a magnetic storm like this could happen again anytime, only now it would affect more than telegraphs: It could damage or cause outages in wireless phone networks, GPS systems, electrical grids powering life-saving medical equipment and more.

Sun-facing satellites monitor the Sun's ultraviolet (UV) light to give us advance warning of solar storms, both big ones that could cause a Carrington-like event as well as the smaller, more common disturbances that can temporarily disrupt communications. One key piece of equipment used in these detectors is a tiny metal filter that blocks out everything except the UV signal researchers need to see.

But for decades, there has been a major problem: Over the course of just a year or two, these filters mysteriously lose their ability to transmit UV light, "clouding up" and forcing astronomers to launch expensive annual recalibration missions. These missions involve sending a freshly calibrated instrument into space to make its own independent observations of the sunlight for comparison.

A leading theory has been that the filters were developing a layer of carbon, whose source is contaminants on the spacecraft, that blocked incoming UV light. Now, NIST scientists and collaborators from the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado, have found the first evidence indicating that carbonization is not the problem, and it must be something else, such as another possible stowaway from Earth. The researchers describe their work in Solar Physics today.

"To my knowledge, it's the first quantitative, really solid argument against carbonization as the cause of the filter degradation," said NIST physicist Charles Tarrio.

What Are They Good For? Absolutely Everything

Most of the light produced by the Sun is visible and includes the rainbow of colors from red (with a wavelength of around 750 nanometers) to violet (with a wavelength of about 400 nm). But the Sun also produces light with wavelengths too long or short for the human eye to see. One of these ranges is extreme ultraviolet (EUV), extending from 100 nm down to just 10 nm.

Only about a tenth of a percent of sunlight is in the EUV range. That tiny EUV signal is extremely useful because it spikes in tandem with solar flares. These eruptions on the surface of the Sun can cause changes to Earth's upper atmosphere that disrupt communications or interfere with GPS readings, causing your phone to suddenly think you are 40 feet away from your true location.

Satellites that measure EUV signals help scientists monitor these solar flares. But the EUV signals also give scientists a heads-up of hours or even days before more destructive phenomena such coronal mass ejections (CMEs), the phenomenon responsible for the Carrington Event. Future CMEs could potentially overload our power lines or increase radiation exposure for airline crew and passengers traveling in certain locations.

And nowadays, the satellites do more than merely give us warnings, said LASP senior research scientist Frank Eparvier, a collaborator on the current work.

"In the past few decades we've gone from just sending out alerts that flares have happened to being able to correct for solar variability due to flares and CMEs," Eparvier said. "Knowing in real time how much the solar EUV is varying allows for the running of computer models of the atmosphere, which can then produce corrections for the GPS units to minimize the impacts of that variability."

The Mystery of the Cloudy Filters

Two metals are particularly useful for filtering out the massive amounts of visible light to let through that small but important EUV signal. Aluminum filters transmit EUV light between 17 nm and 80 nm. Zirconium filters transmit EUV light between 6 nm and 20 nm.

While these filters begin their lives transmitting a lot of EUV light in their respective ranges, the aluminum filters, in particular, quickly lose their transmission abilities. A filter might start by allowing 50% of 30-nm EUV light through to the detector. But within just a year, it only transmits 25% of this light. Within five years, that number is down to 10%.

"It's a significant issue," Tarrio said. Less light transmitted means less data available -- a little like trying to read in a dimly lit room with dark sunglasses.

Scientists have long known that carbon deposits can build up on instruments when they are subjected to UV light. Sources of carbon on satellites can be everything from fingerprints to the materials used in the construction of the spacecraft itself. In the case of the mysteriously cloudy UV filters, researchers thought carbon might have been deposited on them, absorbing EUV light that would otherwise have passed through.

However, since the 1980s, astronomers have been carefully designing spacecraft to be as carbon-free as possible. And that work has helped them with other carbonization problems. But it didn't help with the aluminum EUV filter issue. Nevertheless, the community still suspected carbonization was at least partially responsible for the degradation.

Make-Your-Own Space Weather

To test this in a controlled setting, NIST researchers and collaborators used a machine that effectively lets them create their own space weather.

The instrument is NIST's Synchrotron Ultraviolet Radiation Facility (SURF), a room-sized particle accelerator that uses powerful magnets to move electrons in a circle. The motion generates EUV light, which can be diverted via specialized mirrors to impact targets -- in this case, the aluminum and zirconium satellite filters.

Each filter was 6 millimeters by 18 mm, smaller than a postage stamp, and only 250 nm thick, about 400 times thinner than a human hair. The sample filters were actually slightly thicker than real satellite filters, with other small changes designed to prevent the SURF beam from literally burning holes into the metals. During a run, the back side of each filter was exposed to a controlled source of carbon.

To speed up the testing process, the team blasted the filters with the equivalent of five years' worth of space weather in a mere hour or two. Incidentally, getting that kind of beam power was no sweat for SURF.

"We turn SURF down to about half a percent of its normal power in order to expose the filters to a reasonable amount of light," Tarrio said. "The satellites are 92 million miles away from the Sun, and the Sun's not putting out an awful lot of EUV to begin with."

Finally, after exposure, researchers tested each filter to see how much EUV light in the correct wavelength range was able to pass through.

The team found that transmission was not significantly different after exposure versus before exposure, for either the aluminum or the zirconium. In fact, the difference in transmission was just a fraction of a percent, not nearly enough to explain the kind of clouding that happens in real space satellites.

"We were looking for a 30% decrease in transmission," Tarrio said. "And we just didn't see it."

As an extra test, the scientists gave the filters even larger doses of light -- the equivalent of 50 years' worth of ultraviolet radiation. And even that didn't produce much of a light transmission problem, growing just 3 nm of carbon on the filters -- 10 times less than researchers would have expected if carbon was responsible.

So If It's Not Carbon ...

The real culprit hasn't yet been identified, but researchers already have a different suspect in mind: water.

Like most metals, aluminum naturally has a thin layer on its surface of a material called an oxide, which forms when aluminum binds with oxygen. Everything from aluminum foil to soda cans has this oxide layer, which is chemically identical to sapphire.

In the proposed mechanism, the EUV light would pull atoms of aluminum out of the filter and deposit them on the filter's exterior, which already has that thin oxide layer. The exposed atoms would then react with the oxygen in water from Earth that has hitched a ride on the spacecraft. Together, the exposed aluminum and water would react to form a much thicker oxide layer, which could theoretically be absorbing the light.

Further SURF experiments scheduled for later this year should answer the question of whether the problem really is water, or something else. "This would be the first time that people have looked at the deposition of aluminum oxide in this context," Tarrio said. "We're looking into it as a serious possibility."

-- Reported and written by Jennifer Lauren Lee

INFORMATION:


[Attachments] See images for this press release:
The case of the cloudy filters: Solving the mystery of the degrading sunlight detectors

ELSE PRESS RELEASES FROM THIS DATE:

Gene discovery confirms role of serine deficiency in rare eye disease

2021-03-25
NEW YORK, NY--Treatments for a rare retinal disease may be on the horizon after a new study has identified gene variants that cause a metabolic deficiency in the eye. The disease, macular telangiectasia type 2 (MacTel), has been a research focus of Rando Allikmets, PhD, a pioneer in the genetics of eye diseases, for nearly 15 years. MacTel occurs in approximately 1 in 5,000 adults over age 40 and slowly causes a significant loss of central vision, which can impair driving, reading, and other activities. "MacTel is clearly a genetic disease because it tends to run in families, but it's been a tough nut to crack," says Allikmets, the William and Donna Acquavella Professor of Ophthalmic Sciences ...

Moffitt researchers use mathematical modeling to analyze dynamics of CAR T-cell therapy

2021-03-25
TAMPA, Fla. -- Chimeric antigen receptor T-cell therapy, or CAR T, is a relatively new type of therapy approved to treat several types of aggressive B cell leukemias and lymphomas. Many patients have strong responses to CAR T; however, some have only a short response and develop disease progression quickly. Unfortunately, it is not completely understood why these patients have progression. In an article published in Proceedings of the Royal Society B, Moffitt Cancer Center researchers use mathematical modeling to help explain why CAR T cells work in some patients and not in others. CAR T is a type of personalized immunotherapy that uses a patient's own T ...

New UCF nanotech gives boost to detection of cancer and disease

2021-03-25
ORLANDO, March 25, 2021 - Early screening can mean the difference between life and death in a cancer and disease diagnosis. That's why University of Central Florida researchers are working to develop a new screening technique that's more than 300 times as effective at detecting a biomarker for diseases like cancer than current methods. The technique, which was detailed recently in the Journal of the American Chemical Society, uses nanoparticles with nickel-rich cores and platinum-rich shells to increase the sensitivity of an enzyme-linked immunosorbent assay (ELISA). ELISA is a test ...

A new way to visualize mountains of biological data

A new way to visualize mountains of biological data
2021-03-25
Studying genetic material on a cellular level, such as single-cell RNA-sequencing, can provide scientists with a detailed, high-resolution view of biological processes at work. This level of detail helps scientists determine the health of tissues and organs, and better understand the development of diseases such as Alzheimer's that impacts millions of people. However, a lot of data is also generated, and leads to the need for an efficient, easy-to-use way to analyze it. Now, a team of engineers and scientists from the University of Missouri and the Ohio State University have created a new way to analyze data from single-cell RNA-sequencing ...

The very first structures in the Universe

The very first structures in the Universe
2021-03-25
The very first moments of the Universe can be reconstructed mathematically even though they cannot be observed directly. Physicists from the Universities of Göttingen and Auckland (New Zealand) have greatly improved the ability of complex computer simulations to describe this early epoch. They discovered that a complex network of structures can form in the first trillionth of a second after the Big Bang. The behaviour of these objects mimics the distribution of galaxies in today's Universe. In contrast to today, however, these primordial structures are microscopically small. Typical clumps have masses of only a few grams and fit into volumes much smaller than present-day elementary particles. The results of the study have been published ...

Size of grass blades offers better understanding of their vulnerability to climate change

Size of grass blades offers better understanding of their vulnerability to climate change
2021-03-25
One-third of the Earth's surface is covered by more than 11,000 grass species -- including crops like wheat, corn, rice and sugar cane that account for the bulk of the world's agricultural food production and important biofuels. But grass is so common that few people realize how diverse and important it really is. Research published today in the journal Nature provides insights that scientists could use not only to improve crop design but also to more accurately model the effects of climate change. It also offers new clues that could help scientists use ...

'Break a leg' not so lucky when it leads to limb deformities

Break a leg not so lucky when it leads to limb deformities
2021-03-25
Orthopaedic researchers are one step closer to preventing life-long arm and leg deformities from childhood fractures that do not heal properly. A new study led by the University of South Australia and published in the journal Bone, sheds light on the role that a protein plays in this process. Lead author Dr Michelle Su says that because children's bones are still growing, an injury to the growth plate can lead to a limb in a shortened position, compared to the unaffected side. "Cartilage tissue near the ends of long bones is known as the growth plate that is responsible for bone growth in children and, unfortunately, 30 per cent of childhood and teen fractures involve this growth ...

Pumice the key to solving seabird mass death mystery

2021-03-25
Researchers have used the evidence of pumice from an underwater volcanic eruption to answer a long-standing mystery about a mass death of migrating seabirds. New research into the mass death of millions of shearwater birds in 2013 suggests seabirds are eating non-food materials including floating pumice stones, because they are starving, potentially indicating broader health issues for the marine ecosystem. The research which was led by CSIRO, Australia's national science agency, and QUT, was published in the journal Marine Ecology Progress Series, that examined a 2013 seabird "wreck" in which up to 3 million ...

Planting trees to save the planet: The Chinese experience

Planting trees to save the planet: The Chinese experience
2021-03-25
A coordinated global effort to reduce the production of greenhouse gas emissions from industry and other sectors may not stop climate change, but Earth has a powerful ally that humans might partner with to achieve carbon neutrality: Mother Nature. An international team of researchers called for the use of natural climate solutions to help "cancel" produced emissions and remove existing emissions as part of a comprehensive plan to keep global warming below 1.5 degrees Celsius -- the point at which damage to human life and livelihoods could become catastrophic, according to the United Nations' Intergovernmental Panel on Climate Change. The researchers published their invited views on March 24 in ...

Researchers realized homogenization of surface active sites of heterogeneous catalyst

2021-03-25
Recently, the team led by Professor WU Changzheng from School of Chemistry and Materials Science from University of Science and Technology of China (USTC) in cooperation with the team led by Prof. WU Hengan from School of Engineering Science, realized the homogenization of surface active sites of heterogeneous catalyst by dissolving the electrocatalytic active metal in molten gallium. The related results have been published on the Nature Catalysis on March 11th. Due to the existence of various defects and crystal faces, the active components on the surface of heterogeneous catalysts are often in different ...

LAST 30 PRESS RELEASES:

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology

Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance

Harnessing microwave flow reaction to convert biomass into useful sugars

Unveiling the secrets of bone strength: the role of biglycan and decorin

[Press-News.org] The case of the cloudy filters: Solving the mystery of the degrading sunlight detectors