PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Leveraging the 5G network to wirelessly power IoT devices

Rotman lens-based 'rectenna' capable of millimeter-wave harvesting at 28-GHz with high efficiency from all directions for first time

2021-03-25
(Press-News.org) Researchers at the Georgia Institute of Technology have uncovered an innovative way to tap into the over-capacity of 5G networks, turning them into "a wireless power grid" for powering Internet of Things (IoT) devices that today need batteries to operate.

The Georgia Tech inventors have developed a flexible Rotman lens-based rectifying antenna (rectenna) system capable, for the first time, of millimeter-wave harvesting in the 28-GHz band. (The Rotman lens is key for beamforming networks and is frequently used in radar surveillance systems to see targets in multiple directions without physically moving the antenna system.)

But to harvest enough power to supply low-power devices at long ranges, large aperture antennas are required. The problem with large antennas is they have a narrowing field of view. This limitation prevents their operation if the antenna is widely dispersed from a 5G base station.

"We've solved the problem of only being able to look from one direction with a system that has a wide angle of coverage," said senior researcher Aline Eid in the ATHENA lab, established in Georgia Tech's School of Electrical and Computer Engineering to advance and develop novel technologies for electromagnetic, wireless, RF, millimeter-wave, and sub-terahertz applications.

The findings were reported in the Jan.12 issue of the journal Scientific Reports.

The FCC has authorized 5G to focalize power much more densely compared with previous generations of cellular networks. While today's 5G was built for high-bandwidth communication, the high-frequency network holds rich opportunity to "harvest" unused power that would otherwise be wasted.

Tapping Into 5G High-frequency Power

"With this innovation, we can have a large antenna, which works at higher frequencies and can receive power from any direction. It's direction-agnostic, which makes it a lot more practical," noted Jimmy Hester, senior lab advisor and the CTO and co-founder of Atheraxon, a Georgia Tech spinoff developing 5G radio-frequency identification (RFID) technology.

With the Georgia Tech solution, all the electromagnetic energy collected by the antenna arrays from one direction is combined and fed into a single rectifier, which maximizes its efficiency.

"People have attempted to do energy harvesting at high frequencies like 24 or 35 Gigahertz before," Eid said, but such antennas only worked if they had line of sight to the 5G base station; there was no way to increase their angle of coverage until now.

Operating just like an optical lens, the Rotman lens provides six fields of view simultaneously in a pattern shaped like a spider. Tuning the shape of the lens results in a structure with one angle of curvature on the beam-port side and another on the antenna side. This enables the structure to map a set of selected radiation directions to an associated set of beam-ports. The lens is then used as an intermediate component between the receiving antennas and the rectifiers for 5G energy harvesting.

This novel approach addresses the tradeoff between rectenna angular coverage and turn-on sensitivity with a structure that merges unique radio frequency (RF) and direct current (DC) combination techniques, thereby enabling a system with both high gain and large beamwidth.

In demonstrations, Georgia Tech's technology achieved a 21-fold increase in harvested power compared with a referenced counterpart, while maintaining identical angular coverage.

This robust system may open the door for new passive, long-range, mm-wave 5G-powered RFID for wearable and ubiquitous IoT applications. The researchers used inhouse additive manufacturing to print the palm-sized mm-wave harvesters on a multitude of everyday flexible and rigid substrates. Providing 3D and inkjet printing options will make the system more affordable and accessible to a broad range of users, platforms, frequencies, and applications.

Replacing Batteries With Over-the-air Charging

"The fact is 5G is going to be everywhere, especially in urban areas. You can replace millions, or tens of millions, of batteries of wireless sensors, especially for smart city and smart agricultural applications," said Emmanouil (Manos) Tentzeris, Ken Byers Professor in Flexible Electronics in the School of Electrical and Computer Engineering.

Tentzeris predicts that power as a service will be the next big application for the telecom industry, just as data overtook voice services as a major revenue producer. The research team is most excited by the prospect of service providers embracing this technology to offer power on demand "over the air," eliminating the need for batteries.

"I've been working on energy harvesting conventionally for at least six years, and for most of this time it didn't seem like there was a key to make energy harvesting work in the real world, because of FCC limits on power emission and focalization," Hester said. "With the advent of 5G networks, this could actually work and we've demonstrated it. That's extremely exciting -- we could get rid of batteries."

INFORMATION:

This work was supported by the Air Force Research Laboratory and the National Science Foundation (NSF) - Emerging Frontiers in Research and Innovation program. The work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the NSF (Grant ECCS-1542174).



ELSE PRESS RELEASES FROM THIS DATE:

Circadian clock gene Rev-erb linked to dawn phenomenon in type 2 diabetes

2021-03-25
Researchers at Baylor College of Medicine, Shandong University in China and other institutions may have found an explanation for dawn phenomenon, an abnormal increase of blood sugar only in the morning, observed in many patients with type 2 diabetes. They report in the journal Nature that mice lacking the circadian clock gene called Rev-erb in the brain show characteristics similar to those of dawn phenomenon. The researchers then looked at Rev-erb gene expression in patients with type 2 diabetes comparing a group with dawn phenomenon to a group without it and found that the gene's expression followed a different temporal pattern between these two groups. The findings support the idea that an altered daily rhythm of expression of the Rev-erb gene may underlie dawn phenomenon. Future ...

Vaccine hesitancy poses threat to efforts to end pandemic: New commentary

2021-03-25
WASHINGTON (March 25, 2021)--Although demand for COVID-19 vaccines currently seems high, vaccine hesitancy could pose a major threat to public health efforts to end the pandemic, according to an editorial published today in the journal Science. The authors, including David A. Broniatowski, associate director of the George Washington University Institute for Data, Democracy & Politics, point out that public sentiment towards vaccines are volatile in the face of events such as the recent controversy surrounding the AstraZeneca vaccine clinical trial data. For example, some people could develop safety concerns due to the news reporting about the AstraZeneca vaccine and then turn down the chance to ...

Narcissism driven by insecurity, not grandiose sense of self

2021-03-25
Narcissism is driven by insecurity, and not an inflated sense of self, finds a new study by a team of psychology researchers. Its research, which offers a more detailed understanding of this long-examined phenomenon, may also explain what motivates the self-focused nature of social media activity. "For a long time, it was unclear why narcissists engage in unpleasant behaviors, such as self-congratulation, as it actually makes others think less of them," explains Pascal Wallisch, a clinical associate professor in New York University's Department of Psychology and the senior author of the paper, which appears in the journal Personality and Individual Differences. "This has become quite prevalent in the age of social media--a behavior that's been coined 'flexing'. "Our ...

The 'great leveler' revisited: Why the Corona pandemic might boost inequality in society

2021-03-25
A study by prof. Bas van Bavel and prof. Marten Scheffer shows that throughout history, most disasters and pandemics have boosted inequality instead of levelling it. Whether such disastrous events function as levellers or not, depends on the distribution of economic wealth and political leverage within a society at the moment of crisis. Their findings on the historical effects of crises on equality in societies are now published open access in Nature HSS Communications. It is often thought that the main levellers of inequality in societies were natural disasters such as epidemics or earthquakes, and social turmoil such as wars and ...

Fast-acting, color-changing molecular probe senses when a material is about to fail

Fast-acting, color-changing molecular probe senses when a material is about to fail
2021-03-25
CHAMPAIGN, Ill. -- Materials that contain special polymer molecules may someday be able to warn us when they are about to fail, researchers said. Engineers at the University of Illinois Urbana-Champaign have improved their previously developed force-sensitive molecules, called mechanophores, to produce reversible, rapid and vibrant color change when a force is applied. The new study led by postdoctoral researcher Hai Qian, materials science and engineering professor and head Nancy Sottos, and Beckman Institute of Advanced Science and Technology director Jeffrey Moore is published in the journal Chem. Moore's team has been working with mechanophores for more than a decade, but past efforts have produced molecules that were slow to react and return to their original state, if at all. ...

Scientists uncover a process that stands in the way of making quantum dots brighter

Scientists uncover a process that stands in the way of making quantum dots brighter
2021-03-25
Bright semiconductor nanocrystals known as quantum dots give QLED TV screens their vibrant colors. But attempts to increase the intensity of that light generate heat instead, reducing the dots' light-producing efficiency. A new study explains why, and the results have broad implications for developing future quantum and photonics technologies where light replaces electrons in computers and fluids in refrigerators, for example. In a QLED TV screen, dots absorb blue light and turn it into green or red. At the low energies where TV screens operate, this conversion of light from one color to another is virtually 100% efficient. But at the higher excitation energies required for brighter screens and other ...

Tired of video conferencing? Research suggests you're right to question its effectiveness

2021-03-25
In the year since the coronavirus pandemic upended how just about every person on the planet interacts with one another, video conferencing has become the de facto tool for group collaboration within many organizations. The prevalent assumption is that technology that helps to mimic face-to-face interactions via a video camera will be most effective in achieving the same results, yet there's little data to actually back up this presumption. Now, a new study challenges this assumption and suggests that non-visual communication methods that better synchronize and boost audio cues are in fact more effective. Synchrony Promotes Collective Intelligence Researchers from Carnegie Mellon's Tepper School of Business and the Department of Communication at the University of California, Santa ...

New discoveries of deep brain simulation put it on par with therapeutics

New discoveries of deep brain simulation put it on par with therapeutics
2021-03-25
Despite having remarkable utility in treating movement disorders such as Parkinson's disease, deep brain stimulation (DBS) has confounded researchers, with a general lack of understanding of why it works at some frequencies and does not at others. Now a University of Houston biomedical engineer is presenting evidence in Nature Communications Biology that electrical stimulation of the brain at higher frequencies (>100Hz) induces resonating waveforms which can successfully recalibrate dysfunctional circuits causing movement symptoms. "We investigated the modulations in local ?eld potentials induced by electrical stimulation of the subthalamic nucleus (STN) at therapeutic and non-therapeutic frequencies in Parkinson's disease patients ...

A clue to how some fast-growing tumors hide in plain sight

A clue to how some fast-growing tumors hide in plain sight
2021-03-25
LA JOLLA--The glow of a panther's eyes in the darkness. The zig-zagging of a shark's dorsal fin above the water. Humans are always scanning the world for threats. We want the chance to react, to move, to call for help, before danger strikes. Our cells do the same thing. The innate immune system is the body's early alert system. It scans cells constantly for signs that a pathogen or dangerous mutation could cause disease. And what does it like to look for? Misplaced genetic material. The building blocks of DNA, called nucleic acids, are supposed to be hidden away in the cell nucleus. Diseases can change that. Viruses churn out genetic material in parts of the cell where it's not supposed to be. Cancer cells do too. "Cancer cells harbor damaged DNA," says ...

New clues to classic cancer target found in immune cells

2021-03-25
New clues to a long-pursued drug target in cancer may reside within immune cells, researchers at the University of Michigan Rogel Cancer Center have discovered. The findings, which appear in Nature Immunology, not only shed new light on cancer immunology, they also suggest clinical trials related to this key target -- an interaction that destabilizes the important p53 tumor suppressor protein -- may unnecessarily be excluding a large number of patients. The researchers are optimistic that the findings could help make immunotherapy treatment more effective against ...

LAST 30 PRESS RELEASES:

Bioeconomy in Colombia: The race to save Colombia's vital shellfish

NFL’s Colts bring CPR education to flag football to improve cardiac emergency outcomes

Research: Fitness more important than fatness for a lower risk of premature death

Researchers use biophysics to design new vaccines against RSV and related respiratory viruses

New study highlights physician perspectives on emerging anti-amyloid treatments for Alzheimer’s disease in Israel

U of M research finds creativity camp improves adolescent mental health, well-being

How human brain functional networks emerge and develop during the birth transition

Low-dose ketamine shows promise for pain relief in emergency department patients

Lifestyle & risk factor changes improved AFib symptoms, not burden, over standard care

Researchers discover new cognitive blueprint for making and breaking habits

In a small international trial, novel oral medication muvalaplin lowered Lp(a)

Eradivir’s EV25 therapeutic proven to reduce advanced-stage influenza viral loads faster, more thoroughly in preclinical studies than current therapies

Most Medicare beneficiaries do not compare prescription drug plans – and may be sticking with bad plans

“What Would They Say?” video wins second place in international award for tobacco control advocacy

Black Britons from top backgrounds up to three times more likely to be downwardly mobile

Developing an antibody to combat age-related muscle atrophy

Brain aging and Alzheimer's: Insights from non-human primates

Can cells ‘learn’ like brains?

How cells get used to the familiar

Seemingly “broken” genes in coronaviruses may be essential for viral survival

Improving hurricane modeling with physics-informed machine learning

Seed slippage: Champati cha-cha

Hospitalization following outpatient diagnosis of RSV in adults

Beyond backlash: how feeling threatened by diversity can trigger positive change

Climate change exposure associated with increased emergency imaging

Incorrect AI advice influences diagnostic decisions

Building roots in glass, a bio-inspired approach to creating 3D microvascular networks using plants and fungi

Spinning fusion fuel for efficiency

The American Pediatric Society names Dr. Beth Tarini as the recipient of the 2025 Norman J. Siegel New Member Outstanding Science Award

New Clinical Study Confirms the Anti-Obesity Effects of Kimchi

[Press-News.org] Leveraging the 5G network to wirelessly power IoT devices
Rotman lens-based 'rectenna' capable of millimeter-wave harvesting at 28-GHz with high efficiency from all directions for first time