PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Hungry fruit flies are extreme ultramarathon fliers

In search of food, a fly can travel six million times its body length

Hungry fruit flies are extreme ultramarathon fliers
2021-04-22
(Press-News.org) In 2005, an ultramarathon runner ran continuously 560 kilometers (350 miles) in 80 hours, without sleeping or stopping. This distance was roughly 324,000 times the runner's body length. Yet this extreme feat pales in comparison to the relative distances that fruit flies can travel in a single flight, according to new research from Caltech.

Caltech scientists have now discovered that fruit flies can fly up to 15 kilometers (about 9 miles) in a single journey--6 million times their body length, or the equivalent of over 10,000 kilometers for the average human. In comparison to body length, this is further than many migratory species of birds can fly in a day. To discover this, the team conducted experiments in a dry lakebed in California's Mojave Desert, releasing flies and luring them into traps containing fermenting juice in order to determine their top speeds.

The research was conducted in the laboratory of Michael Dickinson, Esther M. and Abe M. Zarem Professor of Bioengineering and Aeronautics and executive officer for biology and biological engineering. A paper describing the study appears in the journal Proceedings of the National Academy of Sciences on April 20.

The work was motivated by a longstanding paradox that was identified in the 1940s by Theodosius Dobzhansky and other pioneers of population genetics who studied Drosophila species across the Southwest United States. Dobzhansky and others found that fly populations separated by thousands of kilometers appeared much more genetically similar than could be easily explained by their estimates of how far the tiny flies could actually travel. Indeed, when biologists would release flies outdoors, the insects would often simply buzz around in circles over short distances, like they do in our kitchens.

Did flies behave differently when out in the wild, in search of food? In the 1970s and '80s, a group of population geneticists attempted to address this paradox by coating hundreds of thousands of flies in fluorescent powder and releasing them one evening in Death Valley. Remarkably, the group detected a few fluorescent flies in buckets of rotting bananas up to 15 kilometers away the next day.

"These simple experiments raised so many questions," says Dickinson. "How long did it take them to fly there? Were they just blown by the wind? Was it an accident? I have read that paper many times and found it very inspiring. No one had tried to repeat the experiment in a way that would make it possible to measure whether the flies were carried by the wind, how fast they were flying, and how far they can really go."

To measure how flies disperse and interact with the wind, the team designed "release and recapture" experiments. Led by former postdoctoral scholar Kate Leitch, the team made several trips to Coyote Lake, a dry lakebed 140 miles from Caltech in the Mojave Desert, with hundreds of thousands of the common lab fruit fly, Drosophila melanogaster, in tow.

The aim was to release the flies, lure them into traps at set locations, and measure how long it took the insects to fly there. To do this, the team set up 10 "odor traps" in a circular ring, each located along a one-kilometer radius around the release site. Each trap contained a tantalizing cocktail of fermenting apple juice and champagne yeast, a combination that produces carbon dioxide and ethanol, which are irresistible to a fruit fly. The traps also each had a camera, and were constructed with one-way valves so that the flies could crawl into the trap toward the cocktail but not back out. In addition, the researchers set up a weather station to measure the wind speed and direction at the release site throughout each experiment; this would indicate how the flies' flight was affected by the wind.

So as not to interfere with their flight performance, the team did not coat the flies with identifiers like fluorescent powder. So how did they know they were catching their own fruit flies? Before the release, the team first placed the traps and checked them over time, and found that although D. melanogaster are found at date farms within the Mojave, they are extremely rare at Coyote Lake.

The flies released by the team had been originally collected at a fruit stand and then were raised in the lab, but they were not genetically modified in any way. The team performed the experiments after receiving permits from the Bureau of Land Management.

At experiment time, the team drove the buckets of flies to the center of the circle of traps. The buckets contained plenty of sugar, so that the insects would be fully energized for their flight; however, they contained no protein, giving the flies a strong drive to search for protein-rich food. The team estimated that the flies would not be able to smell the traps from the center of the ring, forcing them to disperse and search.

At a precise time, a team member at the center of the circle opened up the buckets simultaneously and quickly released the flies.

"The person who stayed at the center of the ring to open the lids off of all the buckets witnessed quite a spectacle," says Leitch. "It was beautiful. There were so many flies--so many that you were overwhelmed by the whirring drone. A few of them would land on you, often crawling in your mouth, ears, and nose."

The team repeated these experiments under various wind conditions.

It took about 16 minutes for the first fruit flies to cover one kilometer to reach the traps, corresponding to a speed of approximately 1 meter per second. The team interpreted this speed as a lower limit (perhaps these first flies had buzzed around in circles a bit after release or did not fly in a perfectly straight line). Previous studies from the lab showed that a fully fed fruit fly has the energy to fly continuously for up to three hours; extrapolating, the team concluded that D. melanogaster can fly roughly 12 to 15 kilometers in a single flight, even into a gentle breeze, and will go further if aided by a tailwind. This distance is approximately 6 million times the average body length of a fruit fly (2.5 millimeters, or one tenth of an inch). As an analogy, this would be like the average human covering just over 10,000 kilometers in a single journey--roughly the distance from the North Pole to the equator.

"The dispersal capability of these little fruit flies has been vastly underestimated. They can travel as far or farther than most migratory birds in a single flight. These flies are the standard laboratory model organism, but they are almost never studied outside of the laboratory and so we had little idea what their flight capabilities were," Dickinson says.

In 2018, the Dickinson laboratory discovered that fruit flies use the sun as a landmark in order to fly in a straight line in search of food; flying aimlessly in circles could be deadly, so there is an evolutionary benefit to being able to navigate efficiently. After completing the release experiments described in this study, the team proposed a model that suggests that each fly chooses a direction at random, uses the sun to fly straight in that direction, and carefully regulates its forward speed while allowing itself to be blown sideways by the wind. This enables it to cover as much distance as possible and increases the probability that it will encounter a plume of odor from a food source. The team compared their model with traditional models of random insect dispersal and found that their model could explain the results of the desert releases more accurately because of the flies' propensity to maintain a constant heading once released.

Even though D. melanogaster has been co-evolving with humans, this work shows that the fly brain still contains ancient behavioral modules. Dickinson explains: "For any animal, if you find yourself in the middle of nowhere and there's no food, what do you do? Do you just hop around and hope you find some fruit? Or do you say--'Okay, I'm going to pick a direction and go as far as I can in that direction and hope for the best.' These experiments suggest that that's what the flies do."

The research has broader implications for the field of movement ecology, which studies how populations move around the world, essentially shifting biomass for other animals to eat. In fact, during their early pre-release experiments to check for local populations of Drosophila, the team several times caught an invasive species of fly, the spotted-wing Drosophila (Drosophila suzukii), which causes significant agricultural damage across the West Coast.

"We set up these traps in the middle of nowhere, not the Central Valley where there would be fields of food, and still we find these agricultural pests cruising through," says Dickinson. "It's kind of scary to see how far these introduced species can travel using simple navigational strategies."

INFORMATION:

The paper is titled "The long-distance flight behavior of Drosophila supports an agent-based model for wind-assisted dispersal in insects." In addition to Leitch and Dickinson, additional co-authors are Francesca Ponce, William Dickson, and former Dickinson laboratory postdoctoral scholar Floris van Breugel (PhD '14, now of the University of Nevada, Reno). Funding was provided by the Simons Foundation and the National Science Foundation. Dickinson is an affiliated faculty member of the Tianqiao and Chrissy Chen Institute for Neuroscience at Caltech.


[Attachments] See images for this press release:
Hungry fruit flies are extreme ultramarathon fliers

ELSE PRESS RELEASES FROM THIS DATE:

Pregnant women with COVID-19 face high mortality rate

2021-04-22
In a worldwide study of 2,100 pregnant women, those who contracted COVID-19 during pregnancy were 20 times more likely to die than those who did not contract the virus. UW Medicine and University of Oxford doctors led this first-of-its-kind study, published today in JAMA Pediatrics. The investigation involved more than 100 researchers and pregnant women from 43 maternity hospitals in 18 low-, middle- and high-income nations; 220 of the women received care in the United States, 40 at UW Medicine. The research was conducted between April and August of 2020. The study is unique because each woman affected by COVID-19 was compared with two uninfected pregnant women who gave birth during the same span in the same hospital. Aside ...

Machine learning model generates realistic seismic waveforms

Machine learning model generates realistic seismic waveforms
2021-04-22
LOS ALAMOS, N.M., April 22, 2021--A new machine-learning model that generates realistic seismic waveforms will reduce manual labor and improve earthquake detection, according to a study published recently in JGR Solid Earth. "To verify the e?cacy of our generative model, we applied it to seismic ?eld data collected in Oklahoma," said Youzuo Lin, a computational scientist in Los Alamos National Laboratory's Geophysics group and principal investigator of the project. "Through a sequence of qualitative and quantitative tests and benchmarks, we saw that our model can generate high-quality synthetic waveforms and improve machine learning-based earthquake detection algorithms." Quickly and accurately detecting earthquakes can be a challenging task. Visual detection done ...

Study paves the way for new photosensitive materials

Study paves the way for new photosensitive materials
2021-04-22
Photocatalysts are useful materials, with a myriad of environmental and energy applications, including air purification, water treatment, self-cleaning surfaces, pollution-fighting paints and coatings, hydrogen production and CO2 conversion to sustainable fuels. An efficient photocatalyst converts light energy into chemical energy and provides this energy to a reacting substance, to help chemical reactions occur. One of the most useful such materials is knows as titanium oxide or titania, much sought after for its stability, effectiveness as a photocatalyst ...

Reprogramming fibroblasts could result in scar-free wound healing, suggests study in mice

2021-04-22
Researchers have determined a way to potentially minimize or eliminate scarring in wounded skin, by further decoding the scar-promoting role of a specific class of dermal fibroblast cells in mice. By preventing these cells from expressing the transcription factor Engrailed-1 (En-1), Shamik Mascharak and colleagues reprogrammed these cells to take on a different identity, capable of regenerating wounded skin - including the restoration of structures such as hair follicles and sweat glands that are absent in scarred skin tissue. With further development and testing, their discovery could lead to therapies to reduce or completely avoid scarring ...

China requires switch to zero-carbon energy to achieve more ambitious Paris Agreement goal, models S

2021-04-22
A new multi-model analysis suggests that China will need to reduce its carbon emissions by over 90% and its energy consumption by almost 40%, in order to meet the more ambitious target set by the 2016 Paris Agreement. The Agreement called for no more than a 1.5°Celsius (C) global temperature rise by 2050. These results provide a clear directive for China to deploy multiple strategies at once for long-term emission mitigation, the authors say. The findings also highlight the need for more research on the economic consequences of working toward a 1.5°C warming limit, arguing that current studies are far from adequate to inform the sixth assessment report (AR 6) on climate change planned for release by the United Nations' Intergovernmental ...

Medical record analysis links cannabis use disorder in pregnancy to infant health problems

2021-04-22
A new study of nearly five million live births recorded in California from 2001 to 2012 found that babies born to mothers diagnosed with cannabis use disorders at delivery were more likely to experience negative health outcomes, including preterm birth and low birth weight, compared to babies born to mothers without a cannabis use disorder diagnosis. The analysis, published today in Addiction and funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, adds to a growing body of evidence that prenatal exposure to cannabis (marijuana) may be associated with poor birth outcomes, and sheds light on infant health one year after birth. Recent studies have shown the ...

Toxic masculinity: Y chromosome contributes to a shorter lifespan in male flies

Toxic masculinity: Y chromosome contributes to a shorter lifespan in male flies
2021-04-22
Males may have shorter lifespans than females due to repetitive sections of the Y chromosome that create toxic effects as males get older. These new findings appear in a study by Doris Bachtrog of the University of California, Berkeley published April 22 in PLOS Genetics. In humans and other species with XY sex chromosomes, females often live longer than males. One possible explanation for this disparity may be repetitive sequences within the genome. While both males and females carry these repeat sequences, scientists have suspected that the large number of repeats ...

Cannabis use disorder rate rose among pregnant women between 2001-2012

2021-04-22
A study of almost 5 million live births in California by researchers at the Herbert Wertheim School of Public Health and Human Longevity Science at University of California San Diego reports that babies born to mothers diagnosed with cannabis use disorder were more likely to experience negative health outcomes, such as preterm birth and low birth weight, than babies born to mothers without a cannabis use disorder diagnosis. The findings are published online in the April 22, 2021 issue of the journal Addiction. The National Institute on Drug Abuse, part of the National Institutes of Health, funded the study. Cannabis use disorder is a diagnostic term with specific criteria that defines continued cannabis use despite ...

Anti-aging compound improves muscle glucose metabolism in people

Anti-aging compound improves muscle glucose metabolism in people
2021-04-22
A natural compound previously demonstrated to counteract aspects of aging and improve metabolic health in mice has clinically relevant effects in people, according to new research at Washington University School of Medicine in St. Louis. A small clinical trial of postmenopausal women with prediabetes shows that the compound NMN (nicotinamide mononucleotide) improved the ability of insulin to increase glucose uptake in skeletal muscle, which often is abnormal in people with obesity, prediabetes or Type 2 diabetes. NMN also improved expression of genes that are involved in muscle structure and remodeling. However, the treatment did not lower blood glucose or blood pressure, improve blood lipid profile, increase insulin sensitivity in the liver, reduce fat ...

What does 1.5 °C warming limit mean for China?

2021-04-22
As part of the Paris Agreement, nearly all countries agreed to take steps to limit the average increase in global surface temperature to less than 2 °C, or preferably 1.5 °C, compared with preindustrial levels. Since the Agreement was adopted, however, concerns about global warming suggest that countries should aim for the "preferable" warming limit of 1.5 °C. What are the implications for China of trying to achieve this lower limit? Prof. DUAN Hongbo from the University of Chinese Academy of Sciences and Prof. WANG Shouyang from the Academy of Mathematics and Systems Science of the Chinese Academy ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Hungry fruit flies are extreme ultramarathon fliers
In search of food, a fly can travel six million times its body length