(Press-News.org) RESEARCH TRIANGLE PARK, N.C. -- New photonics research paves the way for improved lasers, high-speed computing and optical communications for the Army.
Photonics has the potential to transform all manners of electronic devices by storing and transmitting information in the form of light, rather than electricity. Using light's speed and the way information can be layered in its various physical properties can increase the speed of communication while reducing wasted energy; however, light sources such as lasers need to be smaller, stronger and more stable to achieve that, researchers said.
"Single-mode, high power lasing is used in a wide range of applications that are important to the Army and help support the warfighter including optical communications, optical sensing and LIDAR ranging," said Dr. James Joseph, program manager, ARO, an element of the U.S. Army Combat Capabilities Development Command, known as DEVCOM, Army Research Laboratory. "The research results out of UPenn mark a significant step towards creating more efficient and fieldable laser sources."
The way information can be layered with this technology could also have important implications for photonic computers and communication systems.
Army-funded researchers designed and built two-dimensional arrays of closely packed micro-lasers that have the stability of a single micro-laser but can collectively achieve power density orders of magnitude higher, paving the way for improved lasers, high-speed computing and optical communications for the Army.
In order to preserve the information manipulated by a photonic device, its lasers must be exceptionally stable and coherent. So-called single-mode lasers eliminate noisy variations within their beams and improve their coherence, but as a result, are dimmer and less powerful than lasers that contain multiple simultaneous modes.
Researchers from the University of Pennsylvania and Duke University, with Army funding, designed and built two-dimensional arrays of closely packed micro-lasers that have the stability of a single micro-laser but can collectively achieve power density orders of magnitude higher. They published a study in the peer-reviewed journal Science demonstrating the super-symmetric micro-laser array.
Robots and autonomous vehicles that use LiDAR for optical sensing and ranging, manufacturing and material processing techniques that use lasers, are some of many other potential applications of this research.
"One seemingly straightforward method to achieve a high-power, single-mode laser is to couple multiple identical single-mode lasers together to form a laser array," said Dr. Liang Feng, associate professor in the departments of Materials Science and Engineering and Electrical and Systems Engineering at University of Pennsylvania. "Intuitively, this laser array would have an enhanced emission power, but because of the nature of complexity associated with a coupled system, it will also have multiple super-modes. Unfortunately, the competition between modes makes the laser array less coherent."
Coupling two lasers produces two super-modes, but that number increases quadratically as lasers are arrayed in the two-dimensional grids eyed for photonic sensing and LiDAR applications.
"Single mode operation is critical because the radiance and brightness of the laser array increase with number of lasers only if they are all phase-locked into a single super-mode," said Xingdu Qiao, doctoral candidate at University of Pennsylvania. "Inspired by the concept of supersymmetry from physics, we can achieve this kind of phase-locked single-mode lasing in a laser array by adding a dissipative super-partner."
In particle physics, super-symmetry is the theory that all elementary particles of the two main classes, bosons and fermions, have a yet undiscovered super-partner in the other class. The mathematical tools that predict the properties of each particle's hypothetical super-partner can also be applied to the properties of lasers.
Compared to elementary particles, fabricating a single micro-laser's super-partner is relatively simple. The complexity lies in adapting super-symmetry's mathematical transformations to produce an entire super-partner array that has the correct energy levels to cancel out all but the desired single mode of the original.
Prior to this research, super-partner laser arrays could only have been one-dimensional, with each of the laser elements aligned in a row. By solving the mathematical relationships that govern the directions in which the individual elements couple to one another, this new study demonstrates an array with five rows and five columns of micro-lasers.
"When the lossy super-symmetric partner array and the original laser array are coupled together, all the super-modes except for the fundamental mode are dissipated, resulting in single-mode lasing with 25 times the power and more than 100 times the power density of the original array," said Dr. Zihe Gao, a post-doctoral fellow in Feng's program, "We envision a much more dramatic power scaling by applying our generic scheme for a much larger array even in three dimensions. The engineering behind it is the same."
The study also shows that the technique is compatible with the team's earlier research on vortex lasers, which can precisely control orbital angular momentum, or how a laser beam spirals around its axis of travel. The ability to manipulate this property of light could enable photonic systems encoded at even higher densities than previously imagined.
"Bringing super-symmetry to two-dimensional laser arrays constitutes a powerful toolbox for potential large-scale integrated photonic systems," Feng said.
INFORMATION:
In addition to the Army, the National Science Foundation and a Sloan Research Fellowship also supported this research.
Visit the laboratory's Media Center to discover more Army science and technology stories
DEVCOM Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL is operationalizing science to achieve transformational overmatch. Through collaboration across the command's core technical competencies, DEVCOM leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more successful at winning the nation's wars and come home safely. DEVCOM is a major subordinate command of the Army Futures Command.
PHILADELPHIA-- Art appreciation is considered essential to human experience. While taste in art varies depending on the individual, cognitive neuroscience can provide clues about how viewing art affects our neural systems, and evaluate how these systems inform our valuation of art. For instance, one study shows that viewing art activates motor areas, both in clear representations of movement, like Adam and Eve in Michelangelo's Expulsion from Paradise, and in implied movement through brush strokes, like in Franz Kline's gestural paintings.
Altered neural functioning, like that experienced in patients with Parkinson's disease, changes the way ...
University of Arkansas law professor Jordan Blair Woods challenges the conventional wisdom that only police can enforce traffic laws.
In "Traffic Without Police," to be published in Stanford Law Review, Woods articulates a new legal framework for traffic enforcement, one that separates it from critical police functions, such as preventing and deterring crime, conducting criminal investigations and responding to emergencies.
If not the police, who then would enforce traffic laws? As Woods explains, jurisdictions would delegate most traffic enforcement to newly created traffic agencies. These public offices would operate independently from ...
Researchers at Carnegie Mellon University and McGill University have adapted an algorithm first developed to spot anomalies in data, like typos in patient information at hospitals or errant figures in accounting, to identify similarities across escort ads.
The algorithm scans and clusters similarities in text and could help law enforcement direct their investigations and better identify human traffickers and their victims, said Christos Faloutsos, the Fredkin Professor in Artificial Intelligence at CMU's School of Computer Science, who led the team.
"Our algorithm can put the millions of advertisements together and highlight the common parts," Faloutsos said. "If they have a lot of things in common, it's not guaranteed, but it's highly likely that it ...
An international group of scientists from Italy, the USA, China and Russia have studied the relationship between collectivism, individualism and life satisfaction among young people aged 18-25 in four countries. They found that the higher the index of individualistic values at the country level, the higher the life satisfaction of young people's lives. At the individual level, however, collectivism was more significant for young people. In all countries, young people found a positive association between collectivism, particularly with regard to family ties, and life satisfaction. This somewhat contradicts and at the same time clarifies the results ...
BOSTON - Exclusively using (or "vaping") e-cigarettes can help people quit smoking, but many people using e-cigarettes to quit smoking continue to smoke cigarettes. New research led by investigators at Massachusetts General Hospital (MGH) reveals that respiratory symptoms--such as cough and wheeze--are more likely to develop when people use both e-cigarettes and tobacco cigarettes together compared with using either one alone. The findings are published in the American Journal of Respiratory and Critical Care Medicine, the flagship journal of the American Thoracic Society.
The ...
A new study by Simon Fraser University historical ecologists finds that Indigenous-managed forests--cared for as "forest gardens"--contain more biologically and functionally diverse species than surrounding conifer-dominated forests and create important habitat for animals and pollinators. The findings are published today in Ecology and Society.
According to researchers, ancient forests were once tended by Ts'msyen and Coast Salish peoples living along the north and south Pacific coast. These forest gardens continue to grow at remote archaeological villages on Canada's northwest coast and are composed ...
In 2005, an ultramarathon runner ran continuously 560 kilometers (350 miles) in 80 hours, without sleeping or stopping. This distance was roughly 324,000 times the runner's body length. Yet this extreme feat pales in comparison to the relative distances that fruit flies can travel in a single flight, according to new research from Caltech.
Caltech scientists have now discovered that fruit flies can fly up to 15 kilometers (about 9 miles) in a single journey--6 million times their body length, or the equivalent of over 10,000 kilometers for the average human. In comparison to body length, this is further than many migratory species of birds can fly in a day. To discover this, the team conducted experiments in a dry lakebed ...
In a worldwide study of 2,100 pregnant women, those who contracted COVID-19 during pregnancy were 20 times more likely to die than those who did not contract the virus.
UW Medicine and University of Oxford doctors led this first-of-its-kind study, published today in JAMA Pediatrics. The investigation involved more than 100 researchers and pregnant women from 43 maternity hospitals in 18 low-, middle- and high-income nations; 220 of the women received care in the United States, 40 at UW Medicine. The research was conducted between April and August of 2020.
The study is unique because each woman affected by COVID-19 was compared with two uninfected pregnant women who gave birth during the same span in the same hospital.
Aside ...
LOS ALAMOS, N.M., April 22, 2021--A new machine-learning model that generates realistic seismic waveforms will reduce manual labor and improve earthquake detection, according to a study published recently in JGR Solid Earth.
"To verify the e?cacy of our generative model, we applied it to seismic ?eld data collected in Oklahoma," said Youzuo Lin, a computational scientist in Los Alamos National Laboratory's Geophysics group and principal investigator of the project. "Through a sequence of qualitative and quantitative tests and benchmarks, we saw that our model can generate high-quality synthetic waveforms and improve machine learning-based earthquake detection algorithms."
Quickly and accurately detecting earthquakes can be a challenging task. Visual detection done ...
Photocatalysts are useful materials, with a myriad of environmental and energy applications, including air purification, water treatment, self-cleaning surfaces, pollution-fighting paints and coatings, hydrogen production and CO2 conversion to sustainable fuels.
An efficient photocatalyst converts light energy into chemical energy and provides this energy to a reacting substance, to help chemical reactions occur.
One of the most useful such materials is knows as titanium oxide or titania, much sought after for its stability, effectiveness as a photocatalyst ...