PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Gene therapy offers potential cure to children born without an immune system

Study shows treatment developed by international team restored immune function in more than 95% of patients in three clinical trials

Gene therapy offers potential cure to children born without an immune system
2021-05-11
(Press-News.org) An experimental form of gene therapy developed by a team of researchers from UCLA and Great Ormond Street Hospital in London has successfully treated 48 of 50 children born with a rare and deadly inherited disorder that leaves them without an immune system.

Severe combined immunodeficiency due to adenosine deaminase deficiency, or ADA-SCID, is caused by mutations in the ADA gene that creates the enzyme adenosine deaminase, which is essential to a functioning immune system. For children with the condition, even day-to-day activities like going to school or playing with friends can lead to dangerous, life-threatening infections. If untreated, ADA-SCID can be fatal within the first two years of life.

The investigational gene therapy method involves first collecting some of the child's blood-forming stem cells, which have the potential to create all types of blood and immune cells. Next, using an approach developed by the research team, a new copy of the ADA gene is delivered into the stem cells by a modified lentivirus, or "viral vector." The corrected cells are then returned to the child's body, where they are intended to produce a continual supply of healthy immune cells capable of fighting infection.

In a study published today in the New England Journal of Medicine, co-lead authors Dr. Donald Kohn of UCLA and Dr. Claire Booth of Great Ormond Street Hospital, or GOSH, report two- and three-year outcomes for children treated with the investigational lentiviral gene therapy in clinical trials at GOSH, UCLA Mattel Children's Hospital and the National Institutes of Health between 2012 and 2017.

"Between all three clinical trials, 50 patients were treated, and the overall results were very encouraging," said Kohn, a distinguished professor of microbiology, immunology and molecular genetics and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. "All the patients are alive and well, and in more than 95% of them, the therapy appears to have corrected their underlying immune system problems."

No complications or treatment-limiting events were reported among the patients. Most adverse events were mild or moderate, and were considered to be related to routine procedures performed in preparation for the experimental gene therapy treatment or effects of the immune system rebuilding.

"Treatment was successful in all but two of the 50 cases, and both of those children were able to return to current standard-of care-therapies and treatments, with one eventually receiving a bone marrow transplant," said Kohn, who has been working to develop gene therapies for ADA-SCID and other blood diseases for 35 years.

The investigational gene therapy -- a one-time procedure that the researchers say may provide lifelong results -- is a welcome potential new treatment option for children with ADA-SCID, who otherwise must undergo once- or twice-weekly injections of the ADA enzyme until a matched bone marrow donor, usually a close family member, can be found. If a donor is not available, patients require lifelong injections, along with antibiotics, antifungal medications and monthly infusions of immunoglobulin, which contains infection-fighting antibodies. These treatments are expensive and therefore out of reach for patients in many countries.

"If approved in the future, this treatment could be standard for ADA-SCID, and potentially many other genetic conditions, removing the need to find a matched donor for a bone marrow transplant and the toxic side effects often associated with that treatment," said Booth, a GOSH consultant in pediatric immunology and gene therapy.

The benefits of lentiviral gene therapy

Prior to teaming up, both Booth and Kohn worked separately for years on successful gene therapies for ADA-SCID that used viral vectors made from retroviruses. Retroviral vectors, however, can only enter cells' nuclei to deliver genes while the cells are dividing, limiting the number of cells receiving the genetic payload and, thereby, the potential efficacy of the treatment.

Additionally, while neither Kohn nor Booth observed serious complications in their ADA-SCID trials, other earlier studies testing retroviral vector-based gene therapies did report some serious side effects, including leukemia, in some patients.

In 2008, Booth and Kohn began collaborating with professors Bobby Gaspar and Adrian Thrasher of University College London to develop an improved viral vector using a different kind of virus, called a lentivirus. Viruses of this kind can enter non-dividing cells' nuclei and, when used as vectors, have the potential to make gene therapies safer and more effective. ADA-SCID patients began receiving the new gene therapy at GOSH in 2012; the following year, the experimental treatment was offered at UCLA and the NIH.

"More than 200 patients with various genetic conditions across the world have now been treated with experimental lentiviral gene therapies, and applying gene therapy to ADA-SCID is another significant scientific advance," said Thrasher, a senior author of the study who is also a professor of pediatric immunology at GOSH.

Ten of the children in the UCLA study were treated using a frozen preparation of corrected stem cells. These children experienced similar outcomes to the children treated with cells that were not frozen. The freezing approach may allow children with ADA-SCID to have their stem cells collected locally, then have them transported and processed at a manufacturing facility elsewhere and shipped back to a specialized hospital near them, removing the need for patients and their families to travel long distances to specialist centers.

One patient's story: A life-changing treatment

One of the patients who received a frozen preparation of cells at UCLA, Cora Oakley of Morristown, New Jersey, was diagnosed with ADA-SCID through newborn genetic screening at just 7 days old, in April 2017. "I remember asking the doctor if my daughter was going to die," Cora's mother, Chelsea Oakley, said of receiving the diagnosis. "And his response was, 'I hope not.' It was the darkest day of my life."

Cora was the last child to enroll in the clinical trial and received her own corrected cells in September 2017. Following the gene therapy, Cora and her family spent a month in the bone marrow transplant unit of a hospital closer to their home for Cora's follow-up treatment. The experiences of the other young patients in this unit opened Oakley's eyes to what her daughter would have gone through if the experimental gene therapy hadn't been an option.

"I saw young bone marrow transplant patients who developed graft-versus-host disease and others who had to take all these anti-rejection medications and still had issues. I just thought no one should have to suffer like this," she said. "And then here's my daughter who had this life-changing treatment that felt like a miracle. It still shocks me all the time how unbelievably fortunate we are."

Now a healthy and exuberant 4-year-old, Cora is described by her mom as a "rough and tumble, outdoors kind of kid" who loves all animals and is incredibly social. "I'll never forget what it felt like when we didn't know if she'd ever be able to do any of these things," Oakley said.

INFORMATION:

The investigational lentiviral gene therapy is licensed to Orchard Therapeutics and has not been approved for clinical use by any regulatory authority.

The research was funded by the National Institute of Allergy and Infectious Diseases, the National Heart, Lung and Blood Institute, and the National Human Genome Research Institute (all part of the U.S. National Institutes of Health); the California Institute for Regenerative Medicine; the U.K. National Institute for Health Research's Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust, University College London and Orchard Therapeutics.


[Attachments] See images for this press release:
Gene therapy offers potential cure to children born without an immune system

ELSE PRESS RELEASES FROM THIS DATE:

A comprehensive map of the SARS-CoV-2 genome

2021-05-11
CAMBRIDGE, MA -- In early 2020, a few months after the Covid-19 pandemic began, scientists were able to sequence the full genome of the virus that causes the infection, SARS-CoV-2. While many of its genes were already known at that point, the full complement of protein-coding genes was unresolved. Now, after performing an extensive comparative genomics study, MIT researchers have generated what they describe as the most accurate and complete gene annotation of the SARS-CoV-2 genome. In their study, which appears today in Nature Communications, they confirmed ...

Boosting body heat production: A new approach for treating obesity

Boosting body heat production: A new approach for treating obesity
2021-05-11
A receptor that helps conserve energy when food is scarce may be the key to a safer approach to treating diet-induced obesity, research led by the Garvan Institute of Medical Research has revealed. In a study using experimental models and fat tissue biopsies from obese individuals, the team revealed that blocking a specific receptor of the molecule neuropeptide Y (NPY), which helps our body regulate its heat production, could increase fat metabolism and prevent weight gain. "The Y1 receptor acts as a 'brake' for heat generation in the body. In our study, we found that blocking this receptor in fat tissues transformed the 'energy-storing' fat into 'energy-burning' fat, which ...

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research

1.5°C degrowth scenarios suggest need for new mitigation pathways: Research
2021-05-11
The first comprehensive comparison of 'degrowth' scenarios with established pathways to limit climate change highlights the risk of over-reliance on carbon dioxide removal, renewable energy and energy efficiency to support continued global growth - which is assumed in established global climate modelling. Degrowth focuses on the global North and is defined as an equitable, democratic reduction in energy and material use while maintaining wellbeing. A decline in GDP is accepted as a likely outcome of this transition. The new modelling by the University of Sydney and ETH Zürich includes high growth/technological change and scenarios summarised ...

Hidden within African diamonds, a billion-plus years of deep-earth history

Hidden within African diamonds, a billion-plus years of deep-earth history
2021-05-11
Diamonds are sometimes described as messengers from the deep earth; scientists study them closely for insights into the otherwise inaccessible depths from which they come. But the messages are often hard to read. Now, a team has come up with a way to solve two longstanding puzzles: the ages of individual fluid-bearing diamonds, and the chemistry of their parent material. The research has allowed them to sketch out geologic events going back more than a billion years--a potential breakthrough not only in the study of diamonds, but of planetary evolution. Gem-quality diamonds are nearly pure lattices of carbon. This elemental purity ...

A beetle's Achilles heel

A beetles Achilles heel
2021-05-11
Saw-toothed grain beetles live in a symbiotic association with bacteria. Their bacterial partners provide important building blocks for the formation of the insect's exoskeleton, which protects the beetles from their enemies as well as from desiccation. In a new study, a team of scientists from the Johannes Gutenberg University in Mainz, the Max Planck Institute for Chemical Ecology in Jena, and the National Institute of Advanced Industrial Science and Technology in Japan demonstrates that glyphosate inhibits the symbiotic bacteria of the grain beetle. Beetles exposed to the weedkiller no longer receive the building blocks they need from the bacteria. The study shows that glyphosate has the potential to harm insects indirectly by targeting their bacterial partners ...

Horseradish flea beetle: Protected with the weapons of its food plant

Horseradish flea beetle: Protected with the weapons of its food plant
2021-05-11
When horseradish flea beetles feed on their host plants, they take up not only nutrients but also mustard oil glucosides, the characteristic defense compounds of horseradish and other brassicaceous plants. Using these mustard oil glucosides, the beetles turn themselves into a "mustard oil bomb" and so deter predators. A team of researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, has now been able to demonstrate how the beetle regulates the accumulation of mustard oil glucosides in its body. The beetles have special transporters in the excretory system that prevent the excretion of mustard ...

Stabilizer residue in inks found to inhibit conductivity in 3D printed electronic

Stabilizer residue in inks found to inhibit conductivity in 3D printed electronic
2021-05-11
Inks containing metal nanoparticles are among the most commonly-used conductive materials for printed electronics. Ink-jetting layers of MNP materials allows for unpreceded design flexibility, rapid processing and 3D printing of functional electronic devices such as sensors, solar panels, LED displays, transistors and smart textiles. Inkjet 3D printing of metals typically form a solid printed object via a two-step process: solvent evaporation upon printing (pinning) and subsequent low-temperature consolidation of nanoparticles (sintering). The low temperature is important as in many applications the nanoparticles are co-printed with ...

New genetic copycatchers detect efficient and precise CRISPR editing in a living organism

New genetic copycatchers detect efficient and precise CRISPR editing in a living organism
2021-05-11
Researchers at the University of California San Diego have laid the groundwork for a potential new type of gene therapy using novel CRISPR-based techniques. Working in fruit flies and human cells, research led by UC San Diego Postdoctoral Scholar Zhiqian Li in Division of Biological Sciences Professor Ethan Bier's laboratory demonstrates that new DNA repair mechanisms could be designed to address the effects of debilitating diseases and damaged cell conditions. The scientists developed a novel genetic sensor called a "CopyCatcher," which capitalizes on CRISPR-based gene drive technology, to detect instances in which a genetic element is copied precisely from one chromosome to another throughout cells in ...

Sex cells in parasites are doing their own thing

Sex cells in parasites are doing their own thing
2021-05-11
Researchers at the University of Bristol have discovered how microbes responsible for human African sleeping sickness produce sex cells. In these single-celled parasites, known as trypanosomes, each reproductive cell splits off in turn from the parental germline cell, which is responsible for passing on genes. Conventional germline cells divide twice to produce all four sex cells - or gametes - simultaneously. In humans four sperms are produced from a single germline cell. So, these strange parasite cells are doing their own thing rather than sticking to ...

Study shows how our brains sync hearing with vision

2021-05-11
Every high-school physics student learns that sound and light travel at very different speeds. If the brain did not account for this difference, it would be much harder for us to tell where sounds came from, and how they are related to what we see. Instead, the brain allows us to make better sense of our world by playing tricks, so that a visual and a sound created at the same time are perceived as synchronous, even though they reach the brain and are processed by neural circuits at different speeds. One of the brain's tricks is temporal recalibration: ...

LAST 30 PRESS RELEASES:

Study shows alcohol-dependent men and women have different biochemistries, so may need different treatments

Researchers find that Antidepressants may improve brain function

Aviation can achieve Net-Zero by 2050 if immediate action is taken, says University of Cambridge report

Study shows psychedelic drug psilocybin gives comparable long-term antidepressant effects to standard antidepressants, but may offer additional benefits

Study finds symptoms of depression during pregnancy linked to specific brain activity: scientists hope to develop test for “baby blues” risk

Sexual health symptoms may correlate with poor adherence to adjuvant endocrine therapy in Black women with breast cancer

Black patients with triple-negative breast cancer may be less likely to receive immunotherapy than white patients

Affordable care act may increase access to colon cancer care for underserved groups

UK study shows there is less stigma against LGBTQ people than you might think, but people with mental health problems continue to experience higher levels of stigma

Bringing lost proteins back home

Better than blood tests? Nanoparticle potential found for assessing kidneys

Texas A&M and partner USAging awarded 2024 Immunization Neighborhood Champion Award

UTEP establishes collaboration with DoD, NSA to help enhance U.S. semiconductor workforce

Study finds family members are most common perpetrators of infant and child homicides in the U.S.

Researchers secure funds to create a digital mental health tool for Spanish-speaking Latino families

UAB startup Endomimetics receives $2.8 million Small Business Innovation Research grant

Scientists turn to human skeletons to explore origins of horseback riding

UCF receives prestigious Keck Foundation Award to advance spintronics technology

Cleveland Clinic study shows bariatric surgery outperforms GLP-1 diabetes drugs for kidney protection

Study reveals large ocean heat storage efficiency during the last deglaciation

Fever drives enhanced activity, mitochondrial damage in immune cells

A two-dose schedule could make HIV vaccines more effective

Wastewater monitoring can detect foodborne illness, researchers find

Kowalski, Salonvaara receive ASHRAE Distinguished Service Awards

SkAI launched to further explore universe

SLU researchers identify sex-based differences in immune responses against tumors

Evolved in the lab, found in nature: uncovering hidden pH sensing abilities

Unlocking the potential of patient-derived organoids for personalized sarcoma treatment

New drug molecule could lead to new treatments for Parkinson’s disease in younger patients

Deforestation in the Amazon is driven more by domestic demand than by the export market

[Press-News.org] Gene therapy offers potential cure to children born without an immune system
Study shows treatment developed by international team restored immune function in more than 95% of patients in three clinical trials