(Press-News.org) PHILADELPHIA and MELBOURNE, Australia -- (May. 17, 2021) -- A team of scientists from The Wistar Institute in Philadelphia and the Peter MacCallum Cancer Center in Melbourne, Australia, discovered a new checkpoint mechanism that fine-tunes gene transcription. As reported in a study published in Cell, a component of the Integrator protein complex tethers the protein phosphatase 2A (PP2A) to the site of transcription allowing it to stop the activity of the RNA polymerase II enzyme (RNAPII). Disruption of this mechanism leads to unrestricted gene transcription and is implicated in cancer.
The study points to new viable opportunities for therapeutic intervention demonstrating the anti-cancer effect of a new combination treatment in preclinical models of solid and hematopoietic malignancies.
Gene expression is the first step in the process by which the information encoded by a gene is used to make proteins. Controlling the timing and level of gene expression is crucial for cells to perform their specific functions within an organism, adapt to the surrounding conditions and properly respond to external stimuli.
The team, led by Alessandro Gardini, Ph.D., assistant professor in the Gene Expression & Regulation Program at The Wistar Institute, and Ricky Johnstone, Ph.D., professor, executive director of Cancer Research at the Peter MacCallum Cancer Centre, and head of The Sir Peter MacCallum Department of Oncology at the University of Melbourne, discovered a new checkpoint in the regulation of RNAPII, the enzymes that carries out transcription of DNA into RNA for gene expression.
"Cancer is a consequence of altered gene expression, as turning on or off one or more genes at the wrong time or in the wrong cells can dramatically alter their overall behavior and lead to unrestrained growth," said Gardini. "We describe one of the essential ways through which gene transcription is kept in check."
"We think our discovery provides new insight into how gene expression is tightly controlled," said Johnstone. "This represents a completely new potential avenue for cancer treatment and our initial studies in mice suggested this could also improve the effect of another emerging treatment approach -- CDK9 inhibition -- in both blood-based and solid tumours."
Transcription by the RNAPII enzyme takes place in several steps, each tightly controlled through the opposing functions of cyclin-dependent kinases (CDKs), which modify the enzyme by adding phosphate groups to different parts of the protein, and phosphatases that remove those phosphate groups and counteract CDK activity.
The team uncovered the involvement of a phosphatase called Protein Phosphatase 2A (PP2A) in this regulatory balance. Though PP2A performs the majority of phosphatase activities in a cell, this study provides evidence that it also plays a critical role in transcription.
CDK9 is one of the CDKs that activate RNAPII by promoting elongation, the step in which synthesis of a nascent RNA chain continues as RNAPII moves along the DNA template.
The team found that a component of Integrator, a central regulator of transcriptional processes, interacts with the PP2A phosphatase to recruit it to sites of transcription, where it counteracts CDK9 activity, and blocks transcription elongation. PP2A and CDK9 work in tandem to fine-tune the balance between activation and inhibition of transcription.
Then, researchers tested the hypothesis that targeting the PP2A-Integrator-CDK9 axis in cancer by simultaneously blocking CDK9 and activating PP2A could afford therapeutic benefit in mouse models of leukaemia and solid cancers. Combining treatment with inhibitors of CDK9 (CDK9i) and small molecule activators of PP2A (SMAPs) killed acute myeloid leukemia cells, driving prolonged therapeutic effect and significantly longer survival compared to either single agent. Similarly, combination therapy in a solid tumor model demonstrated reduced tumor growth rates and tumor volume, resulting in enhanced overall survival.
Collectively, this study describes a new fundamental mechanism of gene expression regulation and demonstrates that concomitant CDK9 inhibition and PP2A activation results in enhanced anti-cancer effects in preclinical models of both solid and hematopoietic malignancies, opening new avenues for transcription-based anticancer therapy.
INFORMATION:
Co-authors: Sarah A. Welsh (co-first author), Elisa Barbieri and Sarah Offley from The Wistar Institute; Stephin J. Vervoort (co-first author), Jennifer R. Devlin, Deborah A. Knight, Stefan Bjelosevic, Matteo Costacurta, Izabela Todorovski, Conor J. Kearney, Zheng Fan, Benjamin Blyth, Victoria McLeod, Joseph H. A. Vissers, Ben P. Martin, Gareth Gregory, Elena Demosthenous, Magnus Zethoven, Simon J. Hogg, Madison J. Kelly, Andrea Newbold, Kaylene J. Simpson, and Kieran F. Harvey from the Peter MacCallum Cancer Centre, Melbourne, Australia; Jarrod J. Sandow, Isabella Y. Kong, and Edwin D. Hawkins from The Walter and Elisa Hall Institute, Parkville, Australia; Karolina Pavic, Otto Kauko and Jukka Westermarck from University of Turku, Turku, Finland; Michael Ohlmeyer from Mount Sinai School of Medicine, New York; and Nathanael Gray from Dana Farber Cancer Institute, Boston.
Work supported by: National Institutes of Health (NIH) grants R01 HL141326 and T32-GM071339; a Research Scholar Grant, RSG-18-157-01-DMC from the American Cancer Society, The G. Harold and Leila Y. Mathers Charitable Foundation, Emerson Collective, and the Ovarian Cancer Research Alliance (Collaborative Research Development Grant #596552). Support for The Wistar Institute core facilities was provided by Cancer Center Support Grant P30 CA010815. Additional funding was provided by a Rubicon fellowship, National Health and Medical Research Council of the Australian Government, The Kids' Cancer Project, Victorian Cancer Agency, Cancer Council of Victoria, Academy of Finland, Finnish Cancer Foundation, Finnish Cultural Foundation, Australian Cancer Research Foundation (ACRF), University of Melbourne Collaborative Research Infrastructure Program, and Peter MacCallum Cancer Centre Foundation.
Publication information: The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer, Cell (2021). Online publication.
The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.
Peter MacCallum Cancer Centre is a world-leading cancer research, education and treatment centre and Australia's only public health service solely dedicated to caring for people affected by cancer. Petermac.org.
Exposure to light is compulsory for photosynthetic organisms for the conversion of inorganic compounds into organic ones. However, if there is too much solar energy, the photosystems and other cell components could be damaged. Thanks to special protective proteins, the overexcitation is converted into heat - in the process called non-photochemical quenching. The object of the published study, OCP, was one of such defenders. It was first isolated in 1981 from representatives of the ancient group of photosynthetic bacteria, ?yanobacteria. OCP comprises two domains forming a cavity, in which a carotenoid pigment is embedded.
"When light is absorbed by the carotenoid molecule, OCP can change from an inactive orange to an active red form. ...
For much of the nation's food supply, removing unsafe products off of store shelves can take up to 10 months, according to news reports -- even when people are getting sick.
The growing complexity and scope of modern supply chains result in painfully slow product recalls, even when consumer well-being is at stake. For example, in 2009, salmonella-tainted peanuts killed nine people and sickened more than 700 in 46 states, and the resulting nationwide recall cost peanut farmers, their wholesale customers and retailers more than $1 billion in lost production ...
Viruses attack the body by sending their genetic code -- DNA and RNA -- into cells and multiplying. A promising class of therapeutics that uses synthetic nucleic acids to target and shut down specific, harmful genes and prevent viruses from spreading is gaining steam.
However, only a handful of siRNA, or other RNA interference-based therapeutics have been approved. One of the main problems is getting the siRNA into the body and guiding it to the target.
Chemical engineering researchers in the Cockrell School of Engineering aim to solve that problem, while improving the targeting effectiveness of siRNA. In a new paper in the Journal of Controlled Release, the researchers created several different types of nanoparticles and analyzed them for the ability to deliver and protect siRNA from ...
May 17, 2021 - Amid the rising toll of opioid overdoses and deaths in the U.S., several states are considering laws enabling civil commitment for involuntary treatment of patients with substance use disorders (SUDs). Most addiction medicine physicians support civil commitment for SUD treatment - but others strongly oppose this approach, reports a survey study in Journal of Addiction Medicine, the official journal of the American Society of Addiction Medicine (ASAM). The journal is published in the Lippincott portfolio by Wolters Kluwer.
"Civil commitment has emerged as a sometimes compelling yet controversial policy option," according to the new study, led by Abhishek Jain, MD. At the time of ...
Some 16 million Americans are believed to have alcohol use disorder, and an estimated 93,000 people in the U.S. die from alcohol-related causes each year. Both of those numbers are expected to grow as a result of heavier drinking during the COVID-19 pandemic.
Yet, in a new study involving data from more than 200,000 people with and without alcohol problems, researchers at Washington University School of Medicine in St. Louis found that although the vast majority of those with alcohol use disorder see their doctors regularly for a range of issues, fewer than one in 10 ever get treatment for drinking.
The findings are published in the June issue of the journal Alcoholism: Clinical & Experimental Research.
Analyzing data gathered from 2015 through 2019 via the National ...
In a world that's changing fast, the Long Term Ecological Research (LTER) Network can seem almost an anachronism. Yet the patience and persistence that have generated 40 years of careful, reliable science about the Earth's changing ecosystems may prove to be just what's needed in this rapidly shifting world. We can't wait for a crystal ball -- and we don't have to. By harnessing decades of rich data, scientists are beginning to forecast future conditions and plan ways to manage, mitigate, or adapt to likely changes in ecosystems that will impact human economies, health and wellbeing.
The National Science Foundation established the LTER Network more than 40 years ago to provide an alternative to funding models that favored constant innovation over continuity. The model has proven to be extraordinarily ...
An international study has found that four out of five women in prison in Scotland have a history of head injury, mostly sustained through domestic violence. Published recently in The Lancet, researchers, including SFU psychology graduate student Hira Aslam, say the study has important implications for the female prison population more broadly and could help to inform mental health and criminal justice policy development.
"The findings are incredibly sobering," says Aslam. "While we anticipated that the incidence of head injuries among women who are involved in the criminal justice system would be high, these estimates exceeded our expectations."
Researchers also found that violent criminal behaviour was three times more likely among women who had a history of significant head injury, ...
ATS 2021, New York, NY - Air quality standards recommended by the American Thoracic Society (ATS) have the potential to prevent more illness and death than standards adopted by the U.S. Environmental Protection Agency (EPA), according to research presented at the ATS 2021 International Conference.
Laura Gladson, MS, a research scholar with the Air Quality Program at the Marron Institute of Urban Management, New York University (NYU) and colleagues from NYU and the ATS assessed differences between the potential public health protections provided by EPA air quality standards and the more stringent standards proposed by the ATS. Comparing real-world ...
Two components of imagination -- constructing and evaluating imagined scenarios -- rely on separate subnetworks in the default mode network, according to research recently published in JNeurosci.
Even when you aren't doing anything, your brain is hard at work. The default mode network (DMN) activates during the brain's resting state and has been linked to daydreaming, planning, and imagining the future. In previous studies, scientists noticed the DMN could be divided into two subnetworks, ventral and dorsal, but their different roles were debated.
Lee et al. used fMRI to measure participants' brain activity while they imagined scenarios listed on prompts, like "Imagine you win the lottery." The scenarios ...
KINGSTON, R.I. - May 17, 2021 - An article recently published in the prestigious journal Nature Communications, written by University of Rhode Island END ...