(Press-News.org) One of the especially dangerous health risks of being extremely overweight occurs when an obese person begins to accumulate fat in their liver.
This condition--non-alcoholic fatty liver disease (NAFLD)--is the world's most common chronic liver disease and is the primary underlying cause for liver transplants in children and adults. Without such transplants, which are available to only a small percentage of patients, NAFLD over time can be fatal. In fact, (excluding alcohol-related liver damage) more than 30,000 people a year die from NAFLD.
For years, the primary way to treat NAFLD has been through the use of various weight control methods: diet programs, exercise regimens, medications of limited benefit, bariatric surgery, and more. But once people develop progressive NAFLD, simply losing weight is not enough.
Now, after years of studying the numerous mechanisms involved with obesity and NAFLD, a team of 20 scientists at Cincinnati Children's reports taking a significant step forward. Their findings were published online May 17, 2021, in Cell Metabolism.
Introducing ihTh17 cells
The research team reports that excessive fat deposition in the liver due to obesity can alter the microenvironment of the liver in a way that attracts a highly specific population of immune T cells to the liver. These "inflammatory hepatic CXCR3+Th17 cells" or "ihTh17" cells go on to trigger excess inflammation and life-threatening liver damage.
By running a series of experiments using human tissues and cells and multiple lines of genetically modified mice, the team found that obesity itself triggers activity along a molecular "pathway" that starts with excess expression of the CXCL10 and CXCR3 genes. This abnormal activity attracts more and more ihTh17 cells to the liver. The consequence being a scorched earth inflammatory feedback loop that recruits additional immune cells and progressively damages liver function.
After tracing the ihTh17 cell liver recruitment pathway, the team set out to find a way to break the unhealthy cycle of inflammation. They found success with mice bred to lack expression of the gene Pkm2 in their T cells, which appears to be crucial to continued activity along the CXCR3 pathway.
When these modified mice were given obesity-inducing diets, they still got fat. But they suffered notably less liver damage than non-modified mice.
Next, the researchers tested human tissues collected from people with NAFLD. They confirmed that many of the key genes and molecular activities occurring in the mice also could be detected in the human liver cells.
"Our results demonstrate for the first time that ihTh17 cells represent an important component of the complex world of NAFLD pathogenesis," say corresponding author Senad Divanovic, PhD, a member of the Division of Immunobiology at Cincinnati and first author Maria Moreno-Fernandez, PhD, a postdoctoral fellow in the Divanovic laboratory.
Learning more about how to regulate ihTh17 cells' function and their interaction with the liver cells and the immune system could lead to new therapies to reduce the harm caused by NAFLD.
Next steps
But will the treatment approach used in mice also help people? Human gene editing is not likely to be an acceptable option for this condition anytime soon. However, some drugs are known to be capable of blocking Pkm2 activity, Divanovic says.
Those drugs still require more in-depth laboratory evaluation. Ultimately, a promising compound also would need to be tested in multi-year clinical trials. But now, for the first time in years, the team has a promising lead to explore.
"If we can modulate the unwanted inflammatory responses associated with NAFLD in a targeted way we may be able to ameliorate the liver damage and improve the survival and health of people with NAFLD," Divanovic says.
INFORMATION:
About the study
These findings reflect the latest insights from scientists, surgeons and clinicians at Cincinnati Children's who have devoted many years to obesity research. Their previous work has increased understanding of how obesity changes metabolic activity, immune system function, heart health and more. Several of the co-authors on this publication previously helped establishing bariatric surgery as a safe option for obese children that also helps reverse type 2 diabetes.
In addition to Divanovic, co-authors from 15 research divisions and services at Cincinnati Children's contributed to this study. They include Maria E. Moreno-Fernandez (n.e Fields) (lead author- Division of Immunobiology); Daniel Giles (now at Janssen); Jarren Oates (Division of Immunobiology), Calvin Chan (Division of Immunobiology), Michelle Damen (Division of Immunobiology), Jessica Doll (Division of Immunobiology), Traci Stankiewicz (Division of Immunobiology), Xiaoting Chen (CAGE), Kashish Chetal (Division of Biomedical Informatics), Rebekah Karns (Division of Gastroenterology, Hepatology and Nutrition), Matthew Weirauch (CAGE), Lindsey Romick-Rosendale (NMR Metabolomics Core), Stavra Xanthakos (Division of Gastroenterology, Hepatology and Nutrition), Rachel Sheridan (now at Dayton Children's), Sara Szabo (Division of Pathology and Laboratory Medicine), Amy Shah (Division of Endocrinology), Michael Helmrath (CuSTOM), Hitesh Deshmukh (Division of Neonatology and Pulmonary Biology), and Nathan Salomonis (Division of Biomedical Informatics). Co-authors also include Thomas Inge (now at Children's Hospital Colorado).
Funding for this work includes grants from the National Institutes of Health R01DK099222, R01DK099222-02S1, T32AI118697, T32GM063483-14, R01HL142708-01 and P30 DK078392 of the Digestive Disease Research Core Center; the Department of Defense W81XWH2010392; the American Diabetes Association 1-18-IBS-100 and 1-19-PMF-019; the American Heart Association 17POST33650045; and internal funding support from Cincinnati Children's and the University of Cincinnati.
Early preterm births may be dramatically decreased with docosahexaenoic acid (DHA) supplements, with a dose of 1000 mg more effective for pregnant women with low DHA levels than the 200 mg found in some prenatal supplements, according to a study led by researchers from the University of Kansas and the University of Cincinnati and published today in EClinicalMedicine, a clinical journal of The Lancet. Early preterm birth, defined as birth before 34 weeks gestation, is a serious public health issue because these births result in the highest risk of infant mortality and child disability.
"This study tells us that pregnant women should be taking DHA," said Susan E. Carlson, Ph.D., professor of nutrition in the Department ...
PITTSBURGH, May 17, 2021 - Monoclonal antibodies, a COVID-19 treatment given early after coronavirus infection, cut the risk of hospitalization and death by 60% in those most likely to suffer complications of the disease, according to an analysis of UPMC patients who received the medication compared to similar patients who did not.
UPMC and University of Pittsburgh School of Medicine physician-scientists published the findings today in Open Forum Infectious Diseases, a journal of the Infectious Diseases Society of America. The study involved bamlanivimab, a monoclonal antibody that is now offered only in combination ...
Cultural diversity -- indicated by linguistic diversity -- and biodiversity are linked, and their connection may be another way to preserve both natural environments and Indigenous populations in Africa and perhaps worldwide, according to an international team of researchers.
"The punchline is, that if you are interested in conserving biological diversity, excluding the Indigenous people who likely helped create that diversity in the first place may be a really bad idea," said Larry Gorenflo, professor of landscape architecture, geography and African studies, Penn State. "Humans are part of ecosystems and I hope this study will usher in a more committed effort to engage Indigenous people in conserving localities containing key biodiversity."
Gorenflo, ...
Indigenous people have lived in the Bears Ears region of southeastern Utah for millennia. Ancestral Pueblos built elaborate houses, check dams, agricultural terraces and other modifications of the landscape, leaving ecological legacies that persist to this day. Identifying how humans interacted with past environments is critical for informing how best to protect archaeological sites and ecological diversity in the present. This "archaeo-ecosystem" approach would facilitate co-management of public lands in ways that promote Indigenous health, cultural reclamation and sovereignty.
For the first time, a new study evaluated ecological legacies, archaeo-ecosystem restoration and Indigenous ...
There are roughly 50 billion individual birds in the world, a new big data study by UNSW Sydney suggests - about six birds for every human on the planet.
The study - which bases its findings on citizen science observations and detailed algorithms - estimates how many birds belong to 9700 different bird species, including flightless birds like emus and penguins.
It found many iconic Australian birds are numbered in the millions, like the Rainbow Lorikeet (19 million), Sulphur-crested Cockatoo (10 million) and Laughing Kookaburra (3.4 million). But other natives, like the rare Black-breasted Buttonquail, only have around 100 members left.
The findings are being published this week in the Proceedings ...
Scientists studying the impact of record heat and drought on intact African tropical rainforests were surprised by how resilient they were to the extreme conditions during the last major El Niño event.
The international study, reported in Proceedings of the National Academy of Sciences today, found that intact rainforests across tropical Africa continued to remove carbon from the atmosphere before and during the 2015-2016 El Niño, despite the extreme heat and drought.
Tracking trees in 100 different tropical rainforests across six African countries, the researchers found that intact forests across the continent still removed 1.1 billion tonnes of carbon dioxide per year from the atmosphere during the El Niño monitoring ...
Researchers at Baylor College of Medicine have followed the progression of breast cancer in an animal model and discovered a path that transforms a slow-growing type of cancer known as estrogen receptor (ER)+/HER2+ into a fast-growing ER-/HER2+ type that aggressively spreads or metastasizes to other organs.
The study, which appears in the Proceedings of the National Academy of Sciences, has implications for breast cancer therapy as it suggests the need to differentiate cancer subtypes according to the path the cells follow. Different paths might be linked to different cancer behavior, which should be taken into consideration to plan treatment appropriately.
"In ...
Scientists have detected new early-warning signals indicating that the central-western part of the Greenland Ice Sheet may undergo a critical transition relatively soon. Because of rising temperatures, a new study by researchers from Germany and Norway shows, the destabilization of the ice sheet has begun and the process of melting may escalate already at limited warming levels. A tipping of the ice sheet would substantially increase long-term global sea level rise.
"We have found evidence that the central-western part of the Greenland ice sheet has been destabilizing and is now close to a critical transition," explains lead author Niklas ...
A new technology developed by UZH researchers enables the body to produce therapeutic agents on demand at the exact location where they are needed. The innovation could reduce the side effects of cancer therapy and may hold the solution to better delivery of Covid-related therapies directly to the lungs.
Scientists at the University of Zurich have modified a common respiratory virus, called adenovirus, to act like a Trojan horse to deliver genes for cancer therapeutics directly into tumor cells. Unlike chemotherapy or radiotherapy, this approach does no harm to normal healthy cells. Once inside tumor cells, the delivered genes serve as a blueprint for therapeutic ...
When doctors or scientists want to peer into living tissue, there's always a trade-off between how deep they can probe and how clear a picture they can get.
With light microscopes, researchers can see submicron-resolution structures inside cells or tissue, but only as deep as the millimeter or so that light can penetrate without scattering. Magnetic resonance imaging (MRI) uses radio frequencies that can reach everywhere in the body, but the technique provides low resolution -- about a millimeter, or 1,000 times worse than light.
A University of California, Berkeley, researcher has now shown that microscopic ...