(Press-News.org) Mosquitoes are one of humanity's greatest nemeses, estimated to spread infections to nearly 700 million people per year and cause more than one million deaths.
UC Santa Barbara Distinguished Professor Craig Montell has made a breakthrough in one technique for controlling populations of Aedes aegypti, a mosquito that transmits dengue, yellow fever, Zika and other viruses. The study, published in the Proceedings of the National Academy of Sciences, documents the first use of CRISPER/Cas9 gene editing to target a specific gene tied to fertility in male mosquitoes. The researchers were then able to discern how this mutation can suppress the fertility of female mosquitoes.
Montell and his coauthors were working to improve a vector-control practice called the sterile insect technique (SIT). To manage populations, scientists raise a lot of sterile male insects. They then release these males in numbers that overwhelm their wild counterparts. The idea is that females that mate with sterile males before finding a fertile one are themselves rendered infertile, thereby decreasing the size of the next generation. Repeating this technique several times has the potential to crash the population. What's more, because each generation is smaller than the last, releasing a similar number of sterile males has a stronger effect over time.
SIT has proven effective in managing a number of agricultural pests, including the medfly (Mediterranean fruit fly), a major pest in California. It has also been attempted with A. aegypti mosquitoes, which originated in Africa, but have since become invasive across many parts of the world, due in no small part to climate change and global travel.
In the past, scientists used chemicals or radiation to sterilize male A. aegypti. "There are enough genes that affect fertility that just a random approach of blasting a large number of genes will cause the males to be infertile," said Montell, the Duggan Professor of Molecular, Cellular, and Developmental Biology. However, the chemicals or radiation impacted the animals' health to such an extent that they were less successful in mating with females, which undercuts the effectiveness of the sterile insect technique.
Montell figured there had to be a more targeted approach with less collateral damage. He and his colleagues, including co-first authors Jieyan Chen and Junjie Luo, set out to mutate a gene in mosquitoes that specifically caused male sterility without otherwise impacting the insects' health. The best candidate they found was b2-tubulin (B2t); mutation of the related B2t gene in fruit flies is known to caused male sterility.
Using CRISPER/Cas9, the researchers knocked out B2t in male A. aegypti. They found that the mutant males produced no sperm, but unlike in previous efforts, the sterile studs were otherwise completely healthy. There was some debate over whether sperm -- albeit defective sperm from the sterile males -- was needed to render female mosquitoes infertile, or whether transfer of seminal fluid was all it took.
In one experiment, the researchers introduced 15 mutant males into a group of 15 females for 24 hours. Then they swapped the B2t males for 15 wild-type males, and left them there. "Essentially, all of the females remained sterile," Montell said. This confirmed that B2t males could suppress female fertility without producing sperm.
Next the team set out to determine how timing played into the effect. They exposed the females to mutant males for different lengths of time. The scientists noticed little difference after 30 minutes, but female fertility quickly dropped after that. Montell noted that females copulated twice on average even during the first 10 minutes. This indicated to him that females have to mate with many sterile males before being rendered infertile themselves.
Combining the females with the B2t males for four hours cut female fertility to 20% of normal levels. After eight hours the numbers began leveling out around 10%.
With the insights from the time trials, the team sought to approximate SIT under more natural conditions. They added different ratios of B2t and wild-type males at the same time to a population of 15 females for one week, and recorded female fertility. A ratio of about 5 or 6 sterile males to one wild-type male reduced female fertility by half. A ratio of 15 to 1 suppressed fertility to about 20%, where it leveled off.
Now, Aedes aegypti populations could easily bounce back from an 80% drop in fertility, Montell remarked. The success of SIT comes from subsequent, successive releases of sterile males, where each release will be more effective than the last as sterile males account for an ever-growing proportion of the population.
Montell plans to continue investigating mosquito mating behaviors and fertility. They are devising a way to maintain stocks of B2t males so they are only sterile in the wild and not in the lab. In addition, they are characterizing male mating behavior to uncover new ways to suppress mosquito populations.
"We've become very interested in studying many aspects of behavior in Aedes aegypti because these mosquitoes impact the health of so many people," said Montell, who has conducted a lot of research using fruit flies in the past. "There is a pandemic every year from mosquito-borne diseases."
"When CRISPER/Cas9 came out several years ago it just offered new opportunities to do things that you couldn't do before," he continued. "So, the time seemed right to for us to start working on Aedes aegypti."
INFORMATION:
A study conducted by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory reveals that the use of corn ethanol is reducing the carbon footprint and diminishing greenhouse gases.
The study, recently published in Biofuels, Bioproducts and Biorefining, analyzes corn ethanol production in the United States from 2005 to 2019, when production more than quadrupled. Scientists assessed corn ethanol's greenhouse gas (GHG) emission intensity (sometimes known as carbon intensity, or CI) during that period and found a 23% reduction in CI.
According ...
MUSC Hollings Cancer Center researchers are exploring the use of peptide carriers for the delivery of small RNA drugs as a novel treatment for cancer. The team's recent work, published online March 19 in the Molecular Therapy - Nucleic Acids journal, lays the foundation for developing a clinically relevant peptide carrier RNAi-based drug treatment strategy for human oral cancer.
According to the American Cancer Society, the estimated risk of developing oral cancer in the U.S. is 1 in 60 for men and 1 in 140 for women. Cancer therapies face multiple challenges, including off-target side effects and low efficacy. ...
MAY 24, 2021, NEW YORK - A Ludwig Cancer Research study has discovered how to revive a powerful but functionally inert subset of anti-cancer immune cells that are often found within tumors for cancer therapy.
Led by Ludwig Lausanne's Ping-Chih Ho and Li Tang of the École Polytechnique Fédérale de Lausanne, the study describes how an immune factor known as interleukin-10 orchestrates the functional revival of "terminally exhausted" tumor-infiltrating T lymphocytes (TILs), which have so far proved impervious to stimulation by immunotherapies. It also demonstrates that the factor, when applied in combination with cell therapies, can eliminate tumors in mouse models of melanoma and colon cancer. The findings are reported in the current issue of Nature ...
MIAMI - Scientists from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science analyzed ground movements measured by Interferometric Synthetic Aperture Radar (InSAR) satellite data and GPS stations to precisely model where magma intruded and how magma influx changed over time, as well as where faults under the flanks moved without generating significant earthquakes. The GPS network is operated by the U.S. Geological Survey's Hawaii Volcano Observatory.
"An earthquake of magnitude-6 or greater would relieve the stress imparted by the influx of magma along ...
BOSTON - Cardiovascular disease (CVD) is the leading cause of death in the United States. Public health advocates frequently site Americans' high-sodium diet as one factor in the nation's cardiac health. While sodium has been definitively linked to high-blood pressure -- a key risk factor for CVD -- few rigorously controlled studies make the direct causal link between high sodium intake and cardiovascular damage, heart attack, or stroke.
In a new analysis, researchers from Beth Israel Deaconess Medical Center (BIDMC) examined three cardiovascular biomarkers, which are measurable indicators ...
California state school nutrition policies and federal policies for school meals have mixed impacts on childhood obesity in children of Pacific Islander (PI), Filipino (FI) and American Indian/Alaska native (AIAN) origins, according to a new study published this week in the open access journal PLOS Medicine by Mika Matsuzaki of Johns Hopkins Bloomberg School of Public Health, USA, and colleagues.
Children of PI, FI and AIAN origin are some of the most understudied subgroups experiencing high rates of overweight/obesity. California has enacted policies on foods and beverages available in schools through a series of standards ...
People don't gain or lose weight because they live near a fast-food restaurant or supermarket, according to a new study led by the University of Washington. And, living in a more "walkable", dense neighborhood likely only has a small impact on weight.
These "built-environment" amenities have been seen in past research as essential contributors to losing weight or tending toward obesity. The idea appears obvious: If you live next to a fast-food restaurant, you'll eat there more and thus gain weight. Or, if you have a supermarket nearby, you'll shop there, eat healthier and thus lose weight. Live in a neighborhood that makes walking and biking easier and you'll get out, exercise more and burn more calories. ...
Researchers at the Karolinska Institutet, University of Oxford and University of Copenhagen have shown that elevated levels of lipids known as ceramides can be associated with a ten-fold higher risk of death from cardiovascular disease. Treatment with liraglutide could keep the ceramide levels in check, compared with placebo. The results have been published in the Journal of the American College of Cardiology.
Approximately 16 percent of the Swedish population suffers from obesity (BMI over 30), which is one of the greatest risk factors for cardiovascular diseases such as myocardial infarction and stroke. The World Health ...
Has your heart ever started to race at the thought of an upcoming deadline for work? Or has the sight of an unknown object in a dark room made you jump? Well, you can probably thank your amygdala for that.
The small almond-shaped brain structure is central to how we perceive and process fear. As we start to learn to associate fear with cues in our environment, neuronal connections within the amygdala are dynamically altered in a process called synaptic plasticity. Although this physiological mechanism is important for facilitating fear learning, it has mostly been studied in the context of excitatory neurons within the amygdala. Far less is known about the role inhibitory cells ...
CHICAGO, May 24, 2021--More than a year after COVID-19 appeared in the U.S., dentists continue to have a lower infection rate than other front-line health professionals, such as nurses and physicians, according to a study published online ahead of the June print issue in the Journal of the American Dental Association. The study, "COVID19 among Dentists in the U.S. and Associated Infection Control: a six-month longitudinal study," is based on data collected June 9 - Nov. 13, 2020.
According to the study, based on the number of dentists with confirmed or probable COVID-19 infections over more than six months, the cumulative infection rate for U.S. dentists is 2.6%. The monthly incidence ...