PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Preventing the break-in of the toxoplasmosis parasite

Scientists from the universities of Geneva and Zurich and the PSI have identified the structure and functions of RON13, an enzyme of the toxoplasmosis parasite that is essential for the infectious mechanism in humans

Preventing the break-in of the toxoplasmosis parasite
2021-06-24
(Press-News.org) Toxoplasma gondii, the parasite responsible for toxoplasmosis, is capable of infecting almost all cell types. It is estimated that up to 30% of the world's population is chronically infected, the vast majority asymptomatically. However, infection during pregnancy can result in severe developmental pathology in the unborn child. Like the other members of the large phylum of Apicomplexa, Toxoplasma gondii is an obligate intracellular parasite which, to survive, must absolutely penetrate its host's cells and hijack their functions to its own advantage. Understanding how the parasite manages to enter host cells offers new opportunities to develop more effective prevention and control strategies than those currently available. A team from the University of Geneva (UNIGE), in collaboration with the University of Zurich (UZH) and the Paul Scherrer Institute (PSI) in Villigen, Switzerland, have identified the key role of RON13, a protein of the parasite, which is essential for the invasion process. The three-dimensional structure and the site of action of this enzyme are atypical, thus offering the possibility of designing specific inhibitors to stop the infection. These results are published in the journal Nature Communications.

Specific types of enzymes named kinases are key regulators of a wide range of basic biological processes. "These enzymes modify proteins by adding or removing phosphate groups that, like a switch, turn cellular functions on or off as needed", explains Oscar Vadas, a lecturer in the Department of Microbiology and Molecular Medicine at UNIGE Faculty of Medicine, a specialist in protein biochemistry and co-author of this study. "Kinases are great targets for drug development because, on the one hand, they are relatively easy to inhibit and, on the other hand, they are involved in many pathologies. They are therefore the subject of intense research." Identifying a kinase essential to the survival of a pathogen would thus pave the way for the development of new therapies.

A kinase seen from all its angles

The identification of RON13, a Toxoplasma gondii kinase, quickly became a very attractive subject of study in light of its major role in the invasive capacity of the parasite. "To understand the biological processes controlled by this enzyme, both at the cellular and molecular level, we combined several state-of-the-art technologies", explains Professor Adrian Hehl of UZH. Cryo-electronic microscopy identified an additional modular structure that was absent in all other kinases previously studied, but essential for RON13 activity. Expansion microscopy demonstrated morphological changes in the parasite using high-resolution images. In addition, proteomics was used to identify the kinase targets that are released into host cells to promote its invasion, and genetics was performed to study the impact of the absence of this kinase on the parasite's growth.

"These sophisticated analyses were also made possible thanks to the high-precision technology facilities of the UNIGE Faculty of Medicine, which were made available to the research teams", says Dominique Soldati-Favre, Director of UNIGE Faculty of Medicine Department of Microbiology and Molecular Medicine, who directed this work. "By pooling together all our expertise, we were able to identify precisely the interactions at work and understand the structure of this kinase at the atomic level", underlines Volodymyr Korkhov, a professor at PSI.

Without RON13, there is no invasion

RON13 is a kinase located in a unique compartment of the parasite, an organelle containing proteins to be injected into the host. Without RON13, host cells infection is impossible. "To confirm these results, we infected mice with a strain of the parasite that does not express RON13: it became completely harmless, to the extent that the mice did not show any specific immune response", explains Dominique Soldati-Favre.

Moreover, these very particular characteristics make RON13 insensitive to an inhibitor that is effective on the majority of kinases. "From a therapeutic point of view, this is excellent news", says Oscar Vadas. "This means that we can target it very precisely without affecting human kinases, thus limiting the side effects of the treatment." Moreover, although this work focused on the toxoplasmosis parasite, other pathogens of the Apicomplexa phylum share the same invasion process. It is therefore conceivable that a kinase similar to RON13 plays an essential role in infection by other parasites, and in particular by Plasmodium falciparum, the agent responsible for malaria.

This work was carried out thanks to the support of the Carigest SA Foundation and the Swiss National Science Foundation (SNSF).

INFORMATION:


[Attachments] See images for this press release:
Preventing the break-in of the toxoplasmosis parasite

ELSE PRESS RELEASES FROM THIS DATE:

Plant Protector: How plants strengthen their light-harvesting membranes against environmental stress

Plant Protector: How plants strengthen their light-harvesting membranes against environmental stress
2021-06-24
An international study led by Helmholtz Zentrum München has revealed the structure of a membrane-remodeling protein that builds and maintains photosynthetic membranes. These fundamental insights lay the groundwork for bioengineering efforts to strengthen plants against environmental stress, helping to sustaining human food supply and fight against climate change. Plants, algae, and cyanobacteria perform photosynthesis, using the energy of sunlight to produce the oxygen and biochemical energy that power most life on Earth. They also adsorb carbon dioxide (CO?) from the atmosphere, counteracting the accumulation of this greenhouse gas. However, climate change ...

Feel-good hormone dopamine affects passion and autism

2021-06-24
Men - more often than women - need passion to succeed at things. At the same time, boys are diagnosed as being on the autism spectrum four times as often as girls. Both statistics may be related to dopamine, one of our body's neurotransmitters. "This is interesting. Research shows a more active dopamine system in most men" than in women, says Hermundur Sigmundsson, a professor at the Norwegian University of Science and Technology's (NTNU)Department of Psychology. He is behind a new study that addresses gender differences in key motivating factors for what it takes to become good at something. The study uses men's and women's differing activity in the dopamine system as an explanatory model. "We looked at gender differences around passion, self-discipline ...

Coincidence? I think so: researchers use phylogenetics to untangle convergent adaptation in birds

2021-06-24
Researchers from Skoltech and their colleagues have shown that adaptation to similar environments hardly involves similar genomic positions when species are distantly related. The team investigated recurrent adaptations of wildlife birds' mitochondria to high altitude, migration, diving, wintering, and flight. Repeatable substitutions are rather a coincidence than adaptation, which confirms the scientific opinion that distant species "choose" different ways of similar trait evolution. The paper was published in the journal Genome Biology and Evolution. If an organism wants to survive in unusual conditions, such as oxygen starvation typical for high altitudes or elevation of metabolism rate due to extreme temperatures, it has to adapt. If different species meet similar environment ...

The fifth quartet: Excited neon discovery could reveal star qualities

The fifth quartet: Excited neon discovery could reveal star qualities
2021-06-24
Osaka, Japan - Scientists from the Department of Physics and the Research Center for Nuclear Physics (RCNP) at Osaka University, in collaboration with Kyoto University, used alpha particle inelastic scattering to show that the theorized "5α condensed state" does exist in neon-20. This work may help us obtain a better understanding the low-density nucleon many-body systems. All elements besides hydrogen and helium must have been fused inside the nuclear furnace of a star. The yield during these reactions of carbon-12, which has six protons and six neutrons, is increased by an ...

NASA helps map impact of COVID-19 lockdowns on harmful air pollution

NASA helps map impact of COVID-19 lockdowns on harmful air pollution
2021-06-24
Early in the pandemic, it was expected that satellite imagery around the world would show cleaner air as a result of COVID-19 lockdowns. But not all pollutants were taken out of circulation. For tiny airborne-particle pollution, known as PM 2.5, researchers using NASA data found that variability from meteorology obscured the lockdown signals when observed from space. "Intuitively you would think if there is a major lockdown situation, that we would see dramatic changes, but we didn't," said Melanie Hammer, a visiting research associate at Washington University in St. Louis who led the study. "It was kind of a surprise ...

Predicting tooth loss

2021-06-24
Tooth loss is often accepted as a natural part of aging, but what if there was a way to better identify those most susceptible without the need for a dental exam? New research led by investigators at Harvard School of Dental Medicine suggests that machine learning tools can help identify those at greatest risk for tooth loss and refer them for further dental assessment in an effort to ensure early interventions to avert or delay the condition. The study, published June 18 in PLOS ONE, compared five algorithms using a different combination of variables to screen for risk. The results showed those that factored medical characteristics and socioeconomic variables, such as race, education, arthritis, and diabetes, outperformed algorithms that relied on dental clinical indicators alone. "Our ...

Precision medicine becomes more accessible for Australians with cancer

Precision medicine becomes more accessible for Australians with cancer
2021-06-24
A new resource developed at the Garvan Institute of Medical Research and The Kinghorn Cancer Centre for oncologists could help make targeted cancer therapies more accessible for Australian patients. The TOPOGRAPH (Therapy-Oriented Precision Oncology Guidelines for Recommending Anti-cancer Pharmaceuticals) database is an online tool that catalogues oncology research to streamline the process of recommending therapeutic treatments in precision cancer medicine. Garvan Senior Research Officer Dr Frank Lin led the development of the platform reported this week in the journal npj Precision Oncology. "TOPOGRAPH is uniquely useful in the Australian context because it combines ...

PSU study finds chemicals from human activities in transplanted oysters far from population centers

PSU study finds chemicals from human activities in transplanted oysters far from population centers
2021-06-24
Wastewater treatment facilities clean the water that goes down our sinks and flushes our toilets, but they do not remove everything. A recent study by Portland State researchers detected low levels of pharmaceuticals and personal care product chemicals in oysters the team deployed at various distances from wastewater effluent pipes along the Oregon and Washington coast. Elise Granek, professor of environmental science and management at Portland State University, and Amy Ehrhart, a recent graduate of PSU's Earth, Environment, and Society doctoral program, conducted the study. To explore how aquatic pollution varies based on proximity to wastewater facilities, Ehrhart and Granek placed one-week-old ...

A detailed atlas of the developing brain

2021-06-24
Researchers at Harvard University and the Broad Institute of MIT and Harvard have created a first detailed atlas of a critical region of the developing mouse brain, applying multiple advanced genomic technologies to the part of the cerebral cortex that is responsible for processing sensation from the body. By measuring how gene activity and regulation change over time, researchers now have a better understanding of how the cerebral cortex is built, as well as a brand new set of tools to explore how the cortex is affected in neurodevelopmental disease. The study is published in the journal Nature. "We have had a long-standing interest in understanding the development of the mammalian cerebral cortex, as it is ...

Newly sequenced genome of extinct giant lemur sheds light on animal's biology

Newly sequenced genome of extinct giant lemur sheds light on animals biology
2021-06-24
UNIVERSITY PARK, Pa. -- Using an unusually well-preserved subfossil jawbone, a team of researchers -- led by Penn State and with a multi-national team of collaborators including scientists from the Université d'Antananarivo in Madagascar -- has sequenced for the first time the nuclear genome of the koala lemur (Megaladapis edwardsi), one of the largest of the 17 or so giant lemur species that went extinct on the island of Madagascar between about 500 and 2,000 years ago. The findings reveal new information about this animal's position on the primate family tree and how it interacted with its environment, which could help in understanding the impacts of past lemur extinctions on Madagascar's ecosystems. "More than 100 species of lemurs live on Madagascar today, ...

LAST 30 PRESS RELEASES:

Terahertz pulses induce chirality in a non-chiral crystal

AI judged to be more compassionate than expert crisis responders: Study

Scale-up fabrication of perovskite quantum dots

Adverse childhood experiences influence potentially dangerous firearm-related behavior in adulthood

Bacteria found to eat forever chemicals — and even some of their toxic byproducts

London cabbies’ planning strategies could help inform future of AI

More acidic oceans may affect the sex of oysters

Transportation insecurity in Detroit and beyond

New tool enables phylogenomic analyses of entire genomes

Uncovering the role of Y chromosome genes in male fertility in mice

A single gene underlies male mating morphs in ruff sandpipers

Presenting CASTER – a novel method for evolutionary research

Reforestation boosts biodiversity, while other land-based climate mitigation strategies fall short

Seasonal vertical migrations limit role of krill in deep-ocean carbon storage

Child mortality has risen since pandemic, new study shows

Super enzyme that regulates testosterone levels in males discovered in ‘crazy’ bird species

Study tracks physical and cognitive impairments associated with long COVID

Novel model advances microfiber-reinforced concrete research

Scientists develop new AI method to forecast cyclone rapid intensification

Interpreting metamaterials from an artistic view

Smoking cannabis in the home increases odds of detectable levels in children

Ohio State astronomy professor awarded Henry Draper Medal

Communities of color face greater barriers in accessing opioid medications for pain management

Researchers track sharp increase in diagnoses for sedative, hypnotic and anxiety use disorder in young adults

Advancement in DNA quantum computing using electric field gradients and nuclear spins

How pomalidomide boosts the immune system to fight multiple myeloma

PREPSOIL webinar explores soil literacy among youth: Why it matters and how educators can foster it

Imagining the physics of George R.R. Martin’s fictional universe

New twist in mystery of dinosaurs' origin

Baseline fasting glucose level, age, sex, and BMI and the development of diabetes in US adults

[Press-News.org] Preventing the break-in of the toxoplasmosis parasite
Scientists from the universities of Geneva and Zurich and the PSI have identified the structure and functions of RON13, an enzyme of the toxoplasmosis parasite that is essential for the infectious mechanism in humans