Bigger may not always be better: Density governs receptor activation on immune cells
2021-06-25
(Press-News.org) Scientists from within the Antibody and Vaccine Group at the University of Southampton have gained novel insights into how an important class of immune receptors called tumour necrosis factor receptors (TNFR) are activated.
The work, published in the journal Communications Biology, investigates a class of receptors present on immune cells called TNFR. These receptors, such as CD40, 4-1BB and OX40, are key in helping the immune system fight pathogens and cancer cells. Accordingly, antibody drugs which are designed to specifically target and activate these receptors (called agonists) have been developed for cancer treatment.
The mechanism by which these receptors are activated on the cell surface is important for designing optimal drug formats; however, to date it is not fully understood. Previous work showed that receptor clustering, redistribution of receptors dispersed over the cell surface into localised clusters, is essential for TNF receptor activation, and it is commonly believed that larger clusters induce more potent activation.
The current study, led by Dr Ben Yu and Professor Mark Cragg at the Centre for Cancer Immunology, with colleagues across the University and at ONI UK, employed a set of unique reagents developed at Southampton targeting CD40, 4-1BB and OX40, as well as a new super-resolution microscopy acquired through funding from from the Mark Benevolent Fund, to address how differential receptor clustering mediates receptor activity.
Results from the study confirmed that TNF receptor activation absolutely requires receptor clustering but interestingly, disproved the commonly held belief that larger clusters induce more receptor activation. Rather, the study finds that agonists that induced smaller clusters - but with higher receptor density - mediated better TNF receptor activity than those which induced larger clusters.
In addition to receptor size, the study reveals that one of the most potent antibody agonists targeting CD40 induced a novel rod-shaped clustering structure, which could potentially explain the super-agonistic nature of that antibody. These findings add significant insight into how TNF receptors cluster to mediate immune activation and will help guide future development of therapeutic antibodies targeting TNF receptors.
INFORMATION:
The study was funded by Cancer Research UK.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-06-25
People with dementia receiving home health care visits are less likely to be readmitted to the hospital when there is consistency in nursing staff, according to a new study by researchers at NYU Rory Meyers College of Nursing. The findings are published in the journal Medical Care, a journal of the American Public Health Association.
Home health care--in which health providers, primarily nurses, visit patients' homes to deliver care--has become a leading source of home- and community-based services caring for people living with dementia. These individuals often have multiple chronic conditions, take several medications, and need assistance with activities of daily living. In 2018, more than 5 million Medicare beneficiaries received ...
2021-06-25
COLUMBUS, Ohio - Although the United States is the only wealthy nation that doesn't guarantee paid leave to mothers or fathers after the arrival of a new child, Americans endorse providing paid time off for parents nearly as much as people from other countries.
About 82% of Americans support paid maternity leave, just slightly less than the 86% who support it in 26 wealthy nations, a new study shows.
Where Americans differ from the rest of the world is that they are less supportive of government funding for paid leaves, prefer shorter leave times and are less supportive of paid leave for fathers.
"We find marked differences in how Americans want paid leave administered compared ...
2021-06-25
Singularities such as those at the centre of black holes, where density becomes infinite, are often said to be places where physics 'breaks down'. However, this doesn't mean that 'anything' could happen, and physicists are interested in which laws could break down, and how.
Now, a research team from Imperial College London and the Cockcroft Institute and Lancaster University have proposed a way that singularities could violate the law of conservation of charge. Their theory is published in Annalen der Physik.
Co-author Professor Martin McCall, from the Department of Physics at Imperial, said: "'Physics breaks down at a singularity' is one of the most famous statements in pop-physics. But by ...
2021-06-25
To make computer chips, technologists around the world rely on atomic layer deposition (ALD), which can create films as fine as one atom thick. Businesses commonly use ALD to make semiconductor devices, but it also has applications in solar cells, lithium batteries and other energy-related fields.
Today, manufacturers increasingly rely on ALD to make new types of films, but figuring out how to tweak the process for each new material takes time.
Part of the problem is that researchers primarily use trial and error to identify optimal growth conditions. But a recently published study -- one of the first in this scientific field -- suggests that using artificial intelligence (AI) can be more efficient.
In the ACS Applied ...
2021-06-25
ALBUQUERQUE, N.M. -- Like two superheroes finally joining forces, Sandia National Laboratories' Z machine -- generator of the world's most powerful electrical pulses -- and Lawrence Livermore National Laboratory's National Ignition Facility -- the planet's most energetic laser source -- in a series of 10 experiments have detailed the responses of gold and platinum at pressures so extreme that their atomic structures momentarily distorted like images in a fun-house mirror.
Similar high-pressure changes induced in other settings have produced oddities like hydrogen appearing as a metallic fluid, helium in the form of rain and sodium a transparent metal. But until now there has been no way to accurately calibrate these pressures and responses, the first step to ...
2021-06-25
Tsukuba, Japan - Organic light-emitting diodes (OLEDs) are widely used in display technology and are also being investigated for lighting applications. A comprehensive understanding of these devices is therefore important if their properties are to be harnessed to their full potential. Researchers from the University of Tsukuba have directly observed the photoexcited electron dynamics in an organic film using time-resolved photoelectron emission microscopy. Their findings are published in Advanced Optical Materials .
OLED displays are popular because they are bright, lightweight, and do not consume a lot of power. Their output is generated when an exciton--a combination of an electron and an electron hole--releases its energy. However, this ...
2021-06-25
Tokyo, Japan - A cell is composed of numerous organelles, each with a unique role that helps contribute to its overall functionality. The lysosome is an organelle that contains digestive enzymes and functions as a molecular garbage disposal and recycling center. Since the role of lysosome is crucial to maintain the cellular homeostasis, the lysosomal dysfunction causes neurodegenerative and metabolic diseases, cancer, as well as lysosomal storage disorders.
In a new article published in Autophagy, researchers at Tokyo Medical and Dental University (TMDU) performed a novel type of structural analysis to demonstrate how a certain molecular interaction is crucial for one lysosomal membrane protein to perform effectively.
LAMP1 (lysosomal-associated ...
2021-06-25
LA JOLLA, CA--Chemists at Scripps Research have solved a long-standing problem in their field by developing a method for making a highly useful and previously very challenging type of modification to organic molecules. The breakthrough eases the process of modifying a variety of existing molecules for valuable applications such as improving the potency and duration of drugs.
The flexible new method, for "directed C--H hydroxylation with molecular oxygen," does what only natural enzymes have been able to do until now. It's described in a paper this week in Science.
"We ...
2021-06-25
James Cook University scientists in Australia believe they have made a breakthrough in the science of keeping premature babies alive.
As part of her PhD work, JCU engineering lecturer Stephanie Baker led a pilot study that used a hybrid neural network to accurately predict how much risk individual premature babies face.
She said complications resulting from premature birth are the leading cause of death in children under five and over 50 per cent of neonatal deaths occur in preterm infants.
"Preterm birth rates are increasing almost everywhere. In neonatal intensive care units, assessment of mortality risk assists in making difficult decisions regarding which treatments should be used and if and when treatments are working effectively," said Ms Baker. ...
2021-06-25
RICHLAND, Wash.--Earth bears many signs of human influence, from warming that exceeds pre-industrial temperatures to a rising sea. Add to that list, now, the human influence on the timing of Earth's water cycle, revealed by a new study led by researchers at the U.S. Department of Energy's Pacific Northwest National Laboratory.
The research, published this week in the journal Nature Climate Change, peels back layers of climatological noise to uncover a clear signal: from 1979 to 2019, increases in greenhouse gases and reductions in human-generated aerosols triggered an approximate four-day delay in seasonal rainfall over tropical land and the Sahel. The lag could mean delayed crop production, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Bigger may not always be better: Density governs receptor activation on immune cells