(Press-News.org) Plants play an essential role in curbing climate change, absorbing about one-third of the carbon dioxide emitted from human activities and storing it in soil so it doesn't become a heat-trapping gas. Extreme weather affects this ecosystem service, but when it comes to understanding carbon uptake, floods are studied far less than droughts - and they may be just as important, according to new research.
In a global analysis of vegetation over more than three decades, Stanford University researchers found that photosynthesis - the process by which plants take up carbon dioxide from the atmosphere - was primarily influenced by floods and heavy rainfall nearly as often as droughts in many locations. The paper, published in Environmental Research Letters on June 29, highlights the importance of incorporating plant responses to heavy rainfall in modeling vegetation dynamics and soil carbon storage in a warming world.
"These wet extremes have basically been ignored in this field and we're showing that researchers need to rethink it when designing schemes for future carbon accounting," said senior study author Alexandra Konings, an assistant professor of Earth system science in Stanford's School of Earth, Energy & Environmental Sciences (Stanford Earth). "Specific regions might be much more important for flood impacts than previously thought."
More photosynthesis in combination with other factors can enable greater amounts of carbon to be stored in the soil over the long term, according to the researchers. To estimate the presence of photosynthesis, they analyzed plant greenness according to publicly available satellite data from 1981 to 2015.
Because the field of carbon accounting is dominated by research on drought impacts, the co-authors were surprised to find that photosynthesis was affected by flooding so frequently - in about half the regions in the analysis. While drought is known to decrease photosynthesis, wet extremes can either decrease or accelerate the process.
"I think the drought side is probably something that many of us understand clearly because we can see soils drying out - we know that plants need water to be able to function normally," said lead study author Caroline Famiglietti, a PhD student in Earth system science.
Using statistical analysis, the researchers divided the globe into regions and isolated periods during which the plants' photosynthetic activity wouldn't have resulted from other factors, such as temperature or sunlight changes. They then used several long-term soil moisture datasets to determine which locations were more sensitive to extreme wet events than to extreme dry events and found that many regions in central Mexico, eastern Africa and northern latitudes should be targeted for further investigation.
"Everything that is observed in this master dataset reflects the behavior of the broader climate system," Famiglietti said. "This paper identified something surprising, but it didn't answer all the questions we still have."
In a warmer world, extreme weather is projected to become more intense, extensive and persistent, but the mechanisms controlling drought responses in plants are much better understood than extreme wet responses. The findings suggest an opportunity to address "a big component of the uncertainty in future climate change and its links to ecosystem carbon storage," according to Konings.
"If we can better understand these processes, we can improve modeling and better prepare for the future," Famiglietti said.
INFORMATION:
Konings is also a center fellow, by courtesy, of the Stanford Woods Institute for the Environment, and an assistant professor, by courtesy, of geophysics. Co-author Anna Michalak is affiliated with the Department of Earth System Science and the Carnegie Institution for Science.
The research was supported by the National Oceanic and Atmospheric Administration (NOAA).
A key component of next-generation solar panels can be created without expensive, high-temperature fabrication methods, demonstrating a pathway to large scale, low-cost manufacturing for commercial applications.
Nickel oxide (NiO) is used as an inexpensive hole-transport layer in perovskite solar cells because of its favourable optical properties and long-term stability.
Making high-quality NiO films for solar cells usually requires an energy intensive and high-temperature treatment process called thermal annealing, which is not only costly, but also incompatible with plastic substrates, until now precluding the use of ...
Spatial reasoning ability in small children reflects how well they will perform in mathematics later. Researchers from the University of Basel recently came to this conclusion, making the case for better cultivation of spatial reasoning.
Good math skills open career doors in the natural sciences as well as technical and engineering fields. However, a nationwide study on basic skills conducted in Switzerland in 2019 found that schoolchildren achieved only modest results in mathematics. But it seems possible to begin promoting math skills from a young ...
New research shows thermal imaging techniques can predict whether a wound needs extra management, offering an early alert system to improve chronic wound care.
It is estimated that 1-2% of the population will experience a chronic wound during their lifetime in developed countries - in the US, chronic wounds affect about 6.5 million patients with more than US$25 billion each year spent by the healthcare system on treating related complications.*
The Australian study shows textural analysis of thermal images of venous leg ulcers (VLUs) can detect whether a wound needs extra management as early as week two for clients receiving treatment at home.
The clinical study by RMIT University and Bolton Clarke, published in the Nature journal Scientific Reports, is the first to investigate ...
Decision-makers around the world are increasingly interested in using ecosystem solutions such as mangroves, coral reefs, sand dunes and forests on steep slopes to help buffer the impacts from hazard events and protect populations. But what evidence exists to show the efficacy of nature-based solutions over man-made protective measures to reduce the impacts of the increasing numbers of hazard events humanity faces due to climate change?
An international, multi-disciplinary team of 28 researchers has examined nearly 20 years' worth of peer-reviewed studies on the impacts of ecosystem-based disaster ...
A study analysing the association between a wide variety of prenatal and childhood exposures and neuropsychological development in school-age children has found that organic food intake is associated with better scores on tests of fluid intelligence (ability to solve novel reasoning problems) and working memory (ability of the brain to retain new information while it is needed in the short term). The study, published in Environmental Pollution, was conceived and designed by researchers at the Barcelona Institute for Global Health (ISGlobal)--a centre supported by the "la Caixa" Foundation--and ...
A scientific breakthrough: Researchers from Tel Aviv University have engineered the world's tiniest technology, with a thickness of only two atoms. According to the researchers, the new technology proposes a way for storing electric information in the thinnest unit known to science, in one of the most stable and inert materials in nature. The allowed quantum-mechanical electron tunneling through the atomically thin film may boost the information reading process much beyond current technologies.
The research was performed by scientists from the Raymond and Beverly Sackler School of Physics and Astronomy and Raymond and Beverly Sackler School of Chemistry. The group includes Maayan Vizner Stern, Yuval Waschitz, Dr. Wei Cao, Dr. Iftach Nevo, Prof. Eran Sela, Prof. Michael Urbakh, ...
Working out just five minutes daily via a practice described as "strength training for your breathing muscles" lowers blood pressure and improves some measures of vascular health as well as, or even more than, aerobic exercise or medication, new CU Boulder research shows.
The study, published June 29 in the Journal of the American Heart Association, provides the strongest evidence yet that the ultra-time-efficient maneuver known as High-Resistance Inspiratory Muscle Strength Training (IMST) could play a key role in helping aging adults fend off cardiovascular disease - the nation's leading killer.
In the United States alone, 65% of adults over age 50 have ...
A University of Arkansas researcher and international colleagues found that employed individuals, on average, are 35.3% more likely to be infected with the flu virus.
The findings confirm a long-held assumption about one prevalent way illness spreads and could influence government policy on public health and several issues for private companies, from optimal design and management of physical work spaces to policy decisions about sick leave and remote work.
To track influenza incidence, Dongya "Don" Koh, assistant professor of economics in the Sam M. Walton College of Business, and colleagues relied on nationally representative data from the Medical ...
A new study shows that colleges students are experiencing significant grief reactions in response to the COVID-19 pandemic. The paper, "College Student Experiences of Grief and Loss Amid the COVID-19 Global Pandemic," was recently published in OMEGA - Journal of Death and Dying.
"This study aimed to identify the most common non-death losses and grief reactions experienced by undergraduate and graduate college students amid the pandemic," said author Erica H. Sirrine, Ph.D., director of Social Work at St. Jude Children's Research Hospital. "What we found is that students ...
New Brunswick, N.J. (June 28, 2021) - Rutgers researchers have developed a machine learning model using a physics-based simulator and real-world meteorological data to better predict offshore wind power.
The findings appear in the journal Applied Energy.
Offshore wind is rapidly maturing into a major source of renewable energy worldwide and is projected to grow by 13% in the next two decades and 15-fold by 2040 to become a $1 trillion industry, matching capital spending on gas- and coal-fired power generation. In the United States, for instance, New York and New Jersey recently awarded two offshore ...