Three-in-one approach boosts the silencing power of CRISPR
A newly developed CRISPR-Cas9-based tool carries out efficient and long-term gene silencing by epigenetic editing
2021-07-02
(Press-News.org) Originally discovered as a bacterial mode of defense against invading viruses, the remarkable ability of CRISPR-Cas9 to modify specific locations of DNA has made it a researcher favorite among gene editing tools. The ongoing effort to explore further possibilities of the CRISPR-Cas9 system is ushering in newer developments to this tool. In one of the latest refinements of the technique, as illustrated in a study published in BioDesign Research, scientists from Stanford University, USA have developed a CRISPR-Cas9 system that induces highly effective silencing of target genes.
The versatility of CRISPR-Cas9 based gene editing is largely achieved by modifying the Cas9 protein itself. In this approach, the endonuclease property of the Cas9 protein is removed, yielding a deactivated Cas9, or dCas9. Many effector proteins, including a wide variety of gene expression-altering enzymes, are then fused with dCas9 for targeted binding to specific sites on the DNA. When fused with an activating or repressing transcription factor, the dCas9 complex upregulates or downregulates the target gene, respectively. However, the gene-altering ability of such complexes is transient, as the effects persist only while the effector domains of the regulatory proteins remain physically bound or actively targeted to the region of interest.
For practical purposes, such as suppressing the effect of a disease-causing mutation, a longer-lasting effect of silencing is desirable. Dr. Lei S. Qi from Stanford University, the corresponding author of the study, and colleagues explain this concept further: "The Cas9 endonuclease, that stops the expression of a target gene, is analogous to a brake which stops the car by breaking its engine. In a modified dCas9-repressor fusion system, that contains a transcriptional repressor, the car remains stopped as long as one holds down the brake pedal actively. However, we aimed to develop a silencing system that, like a parking gear, prevents wheel movement until you switch the car out of it".
To achieve this goal, the researchers adopted an approach based on the epigenetic regulation of the eukaryotic genome where gene expression is altered stably and reversibly by the direct modification of genomic regions. Epigenetic silencing involves methylation of both histone proteins and DNA. In the present study, Dr. Qi and his colleagues fused dCas9 protein with a transcription repressor domain KRAB (Krüppel-associated box) and DNA methylating domains of DNMT3L and DNMT3A- two potent epigenetic modifiers. They named the construct dCas9-KAL and tested its silencing capacity in a cell-based reporter system. When stably integrated into human cells expressing fluorescent protein EGFP, the dCas9-KAL construct, designed to localize at the promoter of EGFP, repressed fluorescence for weeks.
The success in developing a robust and long-term epigenetic repressor has multifold implications. Successful silencing of critical or disease-inducing genetic elements can provide better treatment options for cancer and other genetic ailments. Additionally, the unique construct-synthetic reporter system developed in this study will help the scientists in assessing the activity of various domains or their combinations fused to dCas9. As Dr. Muneaki Nakamura from Stanford University, the lead author of the study, explains: "Since its adoption, CRISPR-Cas9 has revolutionized the face of genetic modification. Our system, as a powerful addition to the CRISPR toolbox, will facilitate further research in the field. It can be used to better engineer cells with desired behaviors, which could find use in the development of custom cell types with wide-ranging research and therapeutic applications,". reflects Dr. Qi.
The team's findings certainly make a noteworthy addition to the molecular Swiss knife that is the CRISPR-Cas9 system!
INFORMATION:
Reference
Authors: Muneaki Nakamura1, Alexis E. Ivec1,2, Yuchen Gao1,3, *, Lei S. Qi1,4,5
Title of original paper: Durable CRISPR-based epigenetic silencing
Journal: BioDesign Research
DOI: https://doi.org/10.34133/2021/9815820
Affiliations:
1Department of Bioengineering,
2Program in Human Biology,
3Cancer Biology Program,
4Department of Chemical and Systems Biology,
5ChEM-H Institute,Stanford University, Stanford, United States
*Current Affiliation: Mammoth Biosciences, South San Francisco, United States
About Dr. Lei S. Qi
Dr. Lei S. Qi is an Assistant Professor in the Department of Bioengineering, Department of Chemical and Systems Biology, and a faculty fellow in Stanford ChEM-H. His areas of research interest include CRISPR, Genome Editing, Synthetic Biology, and Cell Engineering. He received his Ph.D. degree in Bioengineering from UC Berkeley and UCSF (joint program), USA. He is one of the major contributors to the development of CRISPR technology for genome engineering. Dr. Qi has more than 120 papers, more than 10 patents, and several renowned awards to his credit.
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-02
New research published in The Journal of Physiology shows that researchers have successfully repurposed two existing medications to reduce the severity of sleep apnoea in people by at least 30 per cent.
Affecting around 1.5 million adults in the UK, sleep apnoea is a condition where the upper airway from the back of the nose to the throat closes repetitively during sleep, restricting oxygen intake and causing people to wake as often as 100 times or more per hour (1).
Those with untreated sleep apnoea are more likely to develop cardiovascular disease, dementia and depression, ...
2021-07-02
NDIANAPOLIS--Indiana University School of Medicine researchers are developing a new, noninvasive brain stimulation technique to treat neurological disorders, including pain, traumatic brain injury (TBI), epilepsy, Parkinson's disease, Alzheimer's disease and more.
"Given the increasing use of brain stimulation in human brain study and treatment of neurological diseases, this research can make a big impact on physicians and their patients," said Xiaoming Jin, PhD, associate professor of anatomy, cell biology and physiology.
When someone experiences a brain injury, nerve injury, or neurodegeneration, such as in epilepsy and TBI, there is damage to the brain which can lead to loss ...
2021-07-02
Small children learn language at a pace far faster than teenagers or adults. One explanation for this learning advantage comes not from differences between children and adults, but from the differences in the way that people talk to children and adults.
For the first time, a team of researchers developed a method to experimentally evaluate how parents use what they know about their children's language when they talk to them. They found that parents have extremely precise models of their children's language knowledge, and use these models to tune the language they use when speaking to them. The results are available in an advance online publication ...
2021-07-02
Lugano, Switzerland, 2 July 2021 - Obese patients with colorectal cancer receive lower cumulative doses of adjuvant chemotherapy, relative to their body surface area (BSA), than non-obese patients, show results from a large meta-analysis reported at the ESMO World Congress on Gastrointestinal Cancer 2021 (1). Further findings showed that cumulative relative chemotherapy dose was associated with survival so may explain the poorer survival that has been seen in obese patients receiving adjuvant chemotherapy for colorectal cancer. (2)
"Adjuvant chemotherapy ...
2021-07-02
Lugano, Switzerland, 2 July 2021 - Doctors and patients are being advised to reduce unnecessary antibiotic use following new data suggesting that these medicines may increase the risk of cancer of the large intestine (colon), especially in people under 50 years. (1) The results, presented at the ESMO World Congress on Gastrointestinal Cancer (30 June-3 July) raise fresh concerns about the impact of the estimated 65% increase in global antibiotic consumption reported between 2000 and 2015, despite not showing a direct cause and effect. (2)
"To our knowledge, ...
2021-07-02
Plastic is notoriously hard to break down, but researchers in Austria have found that bacteria from a cow's rumen - one of the four compartments of its stomach - can digest certain types of the ubiquitous material, representing a sustainable way to reduce plastic litter.
The scientists suspected such bacteria might be useful since cow diets already contain natural plant polyesters. "A huge microbial community lives in the rumen reticulum and is responsible for the digestion of food in the animals," said Dr Doris Ribitsch, of the University of Natural Resources and Life Sciences in Vienna, "so we suspected that some biological activities could also be used for polyester hydrolysis," a type of chemical reaction ...
2021-07-02
Oncotarget published "Loss of CPAP causes sustained EGFR signaling and epithelial-mesenchymal transition in oral cancer" which reported that not only do the abnormal functions of microtubule and microtubule-organizing centers such as centrosomes lead to cancers, but also the malignant tissues are characterized by aberrant centriolar features and amplified centrosomes.
In this study, the authors show that the loss of expression of a microtubule/tubulin binding protein, centrosomal protein 4.1-associated protein, which is critical for centriole biogenesis and normal functioning of the centrosome, caused an increase in the EGFR levels and its signaling and, enhanced the EMT features and invasiveness of OSCC cells.
Further, depletion of CPAP ...
2021-07-02
The human brain is a wonderfully enigmatic organ, helping to juggle multiple tasks efficiently to help us get through a long day! This feature, called executive function, seats primates like us at the pinnacle of evolution. The prospect of losing the spectacular flow of neural information in our brains because of an accident or disease is, thus, unnerving. In the event of such an unfortunate occurrence, to restore the brain to its previous working condition with full functionality--to reboot it, so to speak--would need a better understanding of the specific neural pathways involved in our daily activities that rely on working memory and decision-making--two important executive functions.
To achieve this ...
2021-07-02
Several cancer tumors grow through immunosuppression; that is, they manipulate biological systems in their microenvironments and signal to a specific set of immune cells--those that clear out aberrant cells--to stop acting. It is no wonder that immunotherapy designed to re-establish anti-tumor immunity is rapidly becoming the treatment of choice for these cancers.
One natural immunosuppressive molecule that falls prey to helping cancer tumors is indoleamine-2,3-dioxygenase 1 (henceforth, IDO1). Because it is found in a broad range of cancer tumors, including those of the skin, breast, colon, lung, and blood, scientists have begun to see it as a promising therapeutic target: Suppress its activity and anti-tumor immunity should be back. But all endeavors so far have ...
2021-07-02
Researchers at the Francis Crick Institute and University of Dundee have screened thousands of drug and chemical molecules and identified a range of potential antivirals that could be developed into new treatments for COVID-19 or in preparation for future coronavirus outbreaks.
While COVID-19 vaccines are being rolled out, there are still few drug options that can be used to treat patients with the virus, to reduce symptoms and speed up recovery time. These treatments are especially important for groups where the vaccines are less effective, such as some patients with blood cancers.
In a series of seven papers, published today (2 July) in the Biochemical Journal, the scientists ...
LAST 30 PRESS RELEASES:
[Press-News.org] Three-in-one approach boosts the silencing power of CRISPR
A newly developed CRISPR-Cas9-based tool carries out efficient and long-term gene silencing by epigenetic editing