(Press-News.org) Dr Bock, under the mentorship of Distinguished Professor Dietmar Hutmacher, from QUT Centre for Biomedical Technologies, has focused her research on bone metastases from breast and prostate cancers.
She developed 3D miniature bone-like tissue models in which 3D printed biomimetic scaffolds are seeded with patient-derived bone cells and tumour cells to be used as clinical and preclinical drug testing tools.
The research team investigated their hypothesis that traditional anti-androgen therapy had limited effect in the microenvironment of prostate cancer bone tumours. The team's findings are published in Science Advances.
"We wanted to see if the therapy could be a contributor of cancer cells' adaptive responses that fuelled bone metastasis," Professor Hutmacher said.
"We developed an all-human, microtissue-engineered model of metastatic tissue using human bone-forming cells, prostate cancer cells and 3D printing."
Cancer biologist Distinguished Professor Judith Clements said the team bioengineered the microenvironment of a bone tumour to assess the effects of two clinically routinely used anti-androgen therapies - enzalutamide and bicalutamide - on the tumour cells.
"We found that the interactions between the cancer cells, the bone and the anti-androgens significantly impacted the progress of cancer in the mineralised microenvironment of bone tumours," Professor Clements said.
"This means that the efficacy of these therapies is compromised in the presence of the bone microenvironment."
Professor Hutmacher said an important outcome of the study was the need to upscale the bone tumour microenvironment model platform and make it available to other research groups.
"This would enable the prostate cancer research community to develop therapies for a more effective treatment of advanced prostate cancer."
In future, Dr Bock will use her model with patient-derived cells from patients undergoing prostatectomy, so that it could be used as a personalised preclinical diagnostic and drug testing tool.
"By screening existing and novel drugs using the bone tumour model in the laboratory, doctors will be able to treat individual patients with an anti-cancer therapy that can best suit their clinical need," Dr Bock said.
"This has the potential to considerably improve the quality of life of patients, because patients will not have to trial a succession of drugs, each of which carry the potential of severe side-effects, and which may not work for them."
This research was supported by the National Health & Medical Research Council of Australia, Australian Research Council and the Prostate Cancer Foundation of Australia.
Prostate Cancer Foundation of Australia CEO Professor Jeff Dunn AO said the findings were significant.
"This is an important discovery that will help us to better target treatments for men with different types of prostate cancer," he said.
"The findings also demonstrate the importance of ongoing research to improve our understanding of how different treatments impact disease progression and spread.
"Notably, Australia has one of the highest incidence rates of prostate cancer internationally, with 1 in every 6 Australian men likely to be diagnosed during their lifetime and around 17,000 men diagnosed each year.
"While survival rates for prostate cancer are high, with over 95% of men likely to survive at least five years, we must keep up the pace of work to find curative treatments, especially for advanced disease in the bone.
"There can be no doubt that this research will build on previous discoveries to help us save lives by stopping cancer from spreading and claiming the lives of more than 3,000 men a year, as is currently the case.
"We commend the research team and congratulate PCFA grant recipient Dr Nathalie Bock for her research achievements.
"This is Australian research excellence at its finest," he said.
INFORMATION:
The study, In vitro engineering of a bone metastases model allows us to study the effects of antiandrogen therapies in advanced prostate cancer, was published in Science Advances.
A recent study by scientists from Japanese universities has shown that the shape of cell-derived nanoparticles, known as "extracellular vesicles" (EVs), in body fluids could be a biomarker for identifying types of cancer. In the study, the scientists successfully measured the shape distributions of EVs derived from liver, breast, and colorectal cancer cells, showing that the shape distributions differ from one another. The findings were recently published in the journal Analytical Chemistry.
Early detection of cancerous tumors in the body is essential for ...
New York, NY (July 6, 2021) - Mount Sinai researchers have uncovered the complex cellular mechanisms of Ebola virus, which could help explain its severe toll on humans and identify potential pathways to treatment and prevention. In a study published in mBio, the team reported how a protein of the Ebola virus, VP24, interacts with the double-layered membrane of the cell nucleus (known as the nuclear envelope), leading to significant damage to cells along with virus replication and the propagation of disease.
"The Ebola virus is extremely skilled at dodging the body's immune defenses, and in our study we characterize an important way in which that evasion occurs through disruption of the nuclear envelope, mediated by the VP24 protein," says co-senior ...
QUT PhD researcher Zachariah Schuurs said the research team had identified a new binding site on the SARS-CoV-2 spike protein.
"Binding of the CoV-2 spike protein to heparan sulphate (HS) on cell surfaces is generally the first step in a cascade of interactions the virus needs to initiate an infection and enter the cell.
"Most research has focused on understanding how HS interacts on the receptor-binding domain (RBD) and furin cleavage site of the SARS-CoV-2 virus's spike protein, as these typically bind different types of drugs, vaccines and antibodies.
"We have identified a novel binding site on the N-terminal domain (NTD), a different area of the virus's spike that facilitates the binding of HS. This helps to better understand how the virus ...
A new study of lithium production in a classical nova found a production rate of only a couple of percent that seen in other examples. This shows that there is a large diversity within classical novae and implies that nova explosions alone cannot explain the amount of lithium seen in the current Universe. This is an important result for understanding both the explosion mechanism of classical novae and the overall chemical evolution of the Universe.
In the modern world, lithium is used in the rechargeable batteries powering smartphones and other devices. ...
Cheap to produce and long to degrade, plastic was once a manufacturing miracle. Now, plastic is an environmental plague, clogging landfills and choking waterways. A Japan-based research team has turned back to nature to develop an approach to degrading the stubborn substance. Similar to how a protein binds to cellulose in plants or to chitin in crustaceans to initiate decomposition, an engineered protein is on its way to binding to plastic particles in an effort to more efficiently break them down.
They published their results on June 29 in ACS Catalysis, a journal of the American Chemical Society.
"Polyethylene ...
In two recent articles published in Schizophrenia Bulletin, Sharon Hunter, PhD, an associate professor in the University of Colorado School of Medicine Department of Psychiatry, and M. Camille Hoffman, MD, MSc, an associate professor in the University of Colorado School of Medicine Department of Obstetrics and Gynecology, along with their research group, have uncovered a potential link between choline deficiency in Black pregnant women in the United States and increased risk of developmental and behavioral issues that can evolve into mental illness later in their children's lives.
The first article, published in November 2020, is a study, titled, "Black American Maternal Prenatal Choline, Offspring Gestational Age at Birth, and Developmental Predisposition to Mental Illness." The ...
Scientists at KAIST have fabricated a laser system that generates highly interactive quantum particles at room temperature. Their findings, published in the journal Nature Photonics, could lead to a single microcavity laser system that requires lower threshold energy as its energy loss increases.
The system, developed by KAIST physicist Yong-Hoon Cho and colleagues, involves shining light through a single hexagonal-shaped microcavity treated with a loss-modulated silicon nitride substrate. The system design leads to the generation of a polariton laser at room temperature, which is exciting because this usually requires cryogenic temperatures.
The researchers found another unique and counter-intuitive feature of this design. Normally, energy is lost during laser operation. ...
Australian scientists researching how our immune system responds to COVID-19 have revealed that those infected by early variants in 2020 produced sustained antibodies, however, these antibodies are not as effective against contemporary variants of the virus.
The research is one of the world's most comprehensive studies of the immune response against COVID-19 infection. It suggests vaccination is more effective than the body's natural immune response following infection and shows the need to invest in new vaccine designs to keep pace with emerging COVID variants.
Published today in PLOS ...
Polymer composite materials that combine magnetic and electrical properties are the subjects of particular attention for modern-day researchers. Their basic property is the ability to convert electric polarization into a magnetic field and vice versa. Although some materials exhibit a much better magnetoelectric effect, polymer-based composites are easier not only to produce but also to modify.
Such composites have great potential in a variety of different fields. For example, using them as a basis, scientists can develop surfaces that help cultivate various cells. In this case, polymer composites serve as a substrate through which it is possible to affect the culture using a non-contact and controlled electric charge and morphological properties ...
DANVILLE, Pa. - Having multiple chronic health conditions and living in a rural area were the top two factors affecting increased healthcare system contact among older patients with bladder cancer, a research team has found.
The Geisinger-led team evaluated 73,395 Medicare beneficiaries age 66 and older who had been diagnosed with non-muscle-invasive bladder cancer to assess their treatment burden, defined as the number of days the patients had contact with a health system in the year following diagnosis.
Nearly two-thirds of the patients had multiple co-existing chronic conditions at the time of bladder cancer diagnosis, as well as other aging-related conditions, including a history of falls, ...