PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

NASA space lasers map meltwater lakes in Antarctica with striking precision

NASA space lasers map meltwater lakes in Antarctica with striking precision
2021-07-07
(Press-News.org) From above, the Antarctic Ice Sheet might look like a calm, perpetual ice blanket that has covered Antarctica for millions of years. But the ice sheet can be thousands of meters deep at its thickest, and it hides hundreds of meltwater lakes where its base meets the continent's bedrock. Deep below the surface, some of these lakes fill and drain continuously through a system of waterways that eventually drain into the ocean.

Now, with the most advanced Earth-observing laser instrument NASA has ever flown in space, scientists have improved their maps of these hidden lake systems under the West Antarctic ice sheet--and discovered two more of these active subglacial lakes.

The new study provides critical insight for spotting new subglacial lakes from space, as well as for assessing how this hidden plumbing system influences the speed at which ice slips into the Southern Ocean, adding freshwater that may alter its circulation and ecosystems.

NASA's Ice, Cloud and land Elevation Satellite 2, or ICESat-2, allowed scientists to precisely map the subglacial lakes. The satellite measures the height of the ice surface, which, despite its enormous thickness, rises or falls as lakes fill or empty under the ice sheet.

The study, published July 7 in Geophysical Research Letters, integrates height data from ICESat-2's predecessor, the original ICESat mission, as well as the European Space Agency's satellite dedicated to monitoring polar ice thickness, CryoSat-2.

Hydrology systems under the Antarctic ice sheet have been a mystery for decades. That began to change in 2007, when Helen Amanda Fricker, a glaciologist at Scripps Institution of Oceanography at the University of California San Diego, made a breakthrough that helped update classical understanding of subglacial lakes in Antarctica.

Using data from the original ICESat in 2007, Fricker found for the first time that under Antarctica's fast flowing ice streams, an entire network of lakes connect with one another, filling and draining actively over time. Before, these lakes were thought to hold meltwater statically, without filling and draining.

"The discovery of these interconnected systems of lakes at the ice-bed interface that are moving water around, with all these impacts on glaciology, microbiology, and oceanography--that was a big discovery from the ICESat mission," said Matthew Siegfried, assistant professor of geophysics at Colorado School of Mines, Golden, Colo. and lead investigator in the new study. "ICESat-2 is like putting on your glasses after using ICESat, the data are such high precision that we can really start to map out the lake boundaries on the surface."

Scientists have hypothesized subglacial water exchange in Antarctica results from a combination of factors, including fluctuations in the pressure exerted by the massive weight of the ice above, the friction between the bed of the ice sheet and the rocks beneath, and heat coming up from the Earth below that is insulated by the thickness of the ice. That's a stark contrast from the Greenland ice sheet, where lakes at the bed of the ice fill with meltwater that has drained through cracks and holes on the surface.

To study the regions where subglacial lakes fill and drain more frequently with satellite data, Siegfried worked with Fricker, who played a key role in designing the way the ICESat-2 mission observes polar ice from space.

Siegfried and Fricker's new research shows that a group of lakes including the Conway and Mercer lakes under the Mercer and Whillans ice streams in West Antarctica are experiencing a draining period for the third time since the original ICESat mission began measuring elevation changes on the ice sheet's surface in 2003. The two newly found lakes also sit in this region.

In addition to providing vital data, the study also revealed that the outlines or boundaries of the lakes can change gradually as water enters and leaves the reservoirs.

"We're really mapping out any height anomalies that exist at this point," Siegfried said. "If there are lakes filling and draining, we will detect them with ICESat-2."

'Helping Us Observe' Under the Ice Sheet Precise measurements of basal meltwater are crucial if scientists want to gain a better understanding of Antarctica's subglacial plumbing system, and how all that freshwater might alter the speed of the ice sheet above or the circulation of the ocean into which it ultimately flows.

An enormous dome-shaped layer of ice covering most of the continent, the Antarctic ice sheet flows slowly outwards from the central region of the continent like super thick honey. But as the ice approaches the coast, its speed changes drastically, turning into river-like ice streams that funnel ice rapidly toward the ocean with speeds up to several meters per day. How fast or slow the ice moves depends partly on the way meltwater lubricates the ice sheet as it slides on the underlying bedrock.

As the ice sheet moves, it suffers cracks, crevasses, and other imperfections. When lakes under the ice gain or lose water, they also deform the frozen surface above. Big or small, ICESat-2 maps these elevation changes with a precision down to just a few inches using a laser altimeter system that can measure Earth's surface with unprecedented detail.

Tracking those complex processes with long-term satellite missions will provide crucial insights into the fate of the ice sheet. An important part of what glaciologists have discovered about ice sheets in the last 20 years comes from observations of how polar ice is changing in response to warming in the atmosphere and ocean, but hidden processes such as the way lake systems transport water under the ice will also be key in future studies of the Antarctic Ice Sheet, Fricker said.

"These are processes that are going on under Antarctica that we wouldn't have a clue about if we didn't have satellite data," Fricker said, emphasizing how her 2007 discovery enabled glaciologists to confirm Antarctica's hidden plumbing system transports water much more rapidly than previously thought. "We've been struggling with getting good predictions about the future of Antarctica, and instruments like ICESat-2 are helping us observe at the process scale."

'A Water System That Is Connected to the Whole Earth System' How freshwater from the ice sheet might impact the circulation of the Southern Ocean and its marine ecosystems is one of Antarctica's best kept secrets. Because the continent's subglacial hydrology plays a key role in moving that water, Siegfried also emphasized the ice sheet's connection to the rest of the planet.

"It's not just the ice sheet we're talking about," Siegfried said. "We're really talking about a water system that is connected to the whole Earth system."

Recently, Fricker and another team of scientists explored this connection between freshwater and the Southern Ocean--but this time by looking at lakes near the surface of an ice shelf, a large slab of ice that floats on the ocean as an extension of the ice sheet. Their study reported that a large, ice-covered lake collapsed abruptly in 2019 after a crack or fracture opened from the lake floor to the base of Amery Ice Shelf in East Antarctica.

With data from ICESat-2, the team analyzed the rugged change on the landscape of the ice shelf. The event left a doline, or sinkhole, a dramatic depression of about four square miles (about 10 square kilometers), or more than three times the size of New York City's Central Park. The crack funneled nearly 200 billion gallons of freshwater from the surface of the ice shelf into the ocean below within three days.

During the summer, thousands of turquoise meltwater lakes adorn the bright white surface of Antarctica's ice shelves. But this abrupt event occurred in the middle of the winter, when scientists expect water on the surface of the ice shelf to be completely frozen. Because ICESat-2 orbits Earth with exactly repeating ground tracks, its laser beams can show the dramatic change in the terrain before and after the lake drained, even during the darkness of polar winter.

Roland Warner, a glaciologist with the Australian Antarctic Program Partnership at the University of Tasmania, and lead author of the study, first spotted the scarred ice shelf in images from Landsat 8, a joint mission of NASA and the U.S. Geological Survey. The drainage event was most likely caused by a hydrofracturing process in which the mass of the lake's water led to a surface crack being driven right through the ice shelf to the ocean below, Warner said.

"Because of the loss of this weight of water on the surface of the floating ice shelf, the whole thing bends upwards centered on the lake," Warner said. "That's something that would have been difficult to figure out just staring at satellite imagery."

Meltwater lakes and streams on Antarctica's ice shelves are common during the warmer months. And because scientists expect these meltwater lakes to be more common as air temperatures warm, the risk of hydrofracturing could also increase in coming decades. Still, the team concluded it's too early to determine whether warming in Antarctica's climate caused the demise of the observed lake on Amery Ice Shelf.

Witnessing the formation of a doline with altimetry data was a rare opportunity, but it is also the type of event glaciologists need to analyze in order to study all of the ice dynamics that are relevant in models of Antarctica.

"We have learned so much about ice sheet dynamic processes from satellite altimetry, it is vital that we plan for the next generation of altimeter satellites to continue this record," Fricker said.

INFORMATION:

By Roberto Molar Candanosa NASA's Earth Science News Team


[Attachments] See images for this press release:
NASA space lasers map meltwater lakes in Antarctica with striking precision

ELSE PRESS RELEASES FROM THIS DATE:

How plants compensate symbiotic microbes

How plants compensate symbiotic microbes
2021-07-07
"Equal pay for equal work," a motto touted by many people, turns out to be relevant to the plant world as well. According to new research by Stanford University ecologists, plants allocate resources to their microbial partners in proportion to how much they benefit from that partnership. "The vast majority of plants rely on microbes to provide them with the nutrients they need to grow and reproduce," explained Brian Steidinger, a former postdoctoral researcher in the lab of Stanford ecologist, Kabir Peay. "The problem is that these microbes differ in how well they do the job. We wanted to see how the plants reward their microbial employees." In a new study, published July 6 in the journal American Naturalist, the researchers investigated ...

Quantum particles: Pulled and compressed

Quantum particles: Pulled and compressed
2021-07-07
Very recently, researchers led by Markus Aspelmeyer at the University of Vienna and Lukas Novotny at ETH Zurich cooled a glass nanoparticle into the quantum regime for the first time. To do this, the particle is deprived of its kinetic energy with the help of lasers. What remains are movements, so-called quantum fluctuations, which no longer follow the laws of classical physics but those of quantum physics. The glass sphere with which this has been achieved is significantly smaller than a grain of sand, but still consists of several hundred million atoms. In contrast to ...

When taste and healthfulness compete, taste has a hidden advantage

2021-07-07
DURHAM, N.C. -- You dash into a convenience store for a quick snack, spot an apple and reach for a candy bar instead. Poor self-control may not be the only factor behind your choice, new research suggests. That's because our brains process taste information first, before factoring in health information, according to new research from Duke University. "We spend billions of dollars every year on diet products, yet most people fail when they attempt to diet," said study co-author Scott Huettel, a professor of psychology and neuroscience at Duke. "Taste seems to have an advantage that sets us up for failure." "For many individuals, health information enters the decision process ...

Reducing the melting of the Greenland ice cap using solar geoengineering?

2021-07-07
Injecting sulphur into the stratosphere to reduce solar radiation and stop the Greenland ice cap from melting. An interesting scenario, but not without risks. Climatologists from the University of Liège have looked into the matter and have tested one of the scenarios put forward using the MAR climate model developed at the University of Liège. The results are mixed and have been published in the journal The Cryosphere. The Greenland ice sheet will lose mass at an accelerated rate throughout the 21st century, with a direct link between anthropogenic greenhouse gas emissions and the extent of Greenland's mass loss. To combat this phenomenon, and therefore global warming, it is essential to reduce ...

Machine learning tool sorts the nuances of quantum data

2021-07-07
ITHACA, N.Y. - An interdisciplinary team of Cornell and Harvard University researchers developed a machine learning tool to parse quantum matter and make crucial distinctions in the data, an approach that will help scientists unravel the most confounding phenomena in the subatomic realm. The Cornell-led project's paper, "Correlator Convolutional Neural Networks as an Interpretable Architecture for Image-like Quantum Matter Data," published June 23 in Nature Communications. The lead author is doctoral student Cole Miles. The Cornell team was led by Eun-Ah Kim, professor of physics in the College of Arts and Sciences, who partnered with Kilian Weinberger, associate professor of computing and information science in the Cornell Ann S. ...

Why insisting you're not racist may backfire

2021-07-07
When you insist you're not racist, you may unwittingly be sending the opposite message. That's the conclusion of a new study* by three Berkeley Haas researchers who conducted experiments with white participants claiming to hold egalitarian views. After asking them to write statements explaining why they weren't prejudiced against Black people, they found that other white people could nevertheless gauge the writers' underlying prejudice. "Americans almost universally espouse egalitarianism and wish to see themselves as non-biased, yet racial prejudice persists," says Berkeley ...

New generation anti-cancer drug shows promise for children with brain tumors

New generation anti-cancer drug shows promise for children with brain tumors
2021-07-07
A genetic map of an aggressive childhood brain tumour called medulloblastoma has helped researchers identify a new generation anti-cancer drug that can be repurposed as an effective treatment for the disease. This international collaboration, led by researchers from The University of Queensland's (UQ) Diamantina Institute and WEHI in Melbourne, could give parents hope in the fight against the most common and fatal brain cancer in children. UQ lead researcher Dr Laura Genovesi said the team had mapped the genetics of these aggressive brain tumours for five years to find new pathways that existing drugs could potentially target. "These are drugs already approved for other diseases or cancers but have never been tested in paediatric brain tumours," Dr Genovesi ...

For many students, double-dose algebra leads to college attainment

For many students, double-dose algebra leads to college attainment
2021-07-07
ST. LOUIS -- In the United States, low-income and minority students are completing college at low rates compared to higher-income and majority peers -- a detriment to reducing economic inequality. Double-dose algebra could be a solution, according to a new study published in roceedings of the National Academy of Sciences of the United States of America (PNAS). The paper, "Effects of Double-Dose Algebra on College Persistence and Degree Attainment," is the culmination of a series of studies that followed two cohorts of ninth-grade students over a period of 12 years in the Chicago Public Schools (CPS) where double-dose algebra ...

Tiny tools: Controlling individual water droplets as biochemical reactors

Tiny tools: Controlling individual water droplets as biochemical reactors
2021-07-07
Miniaturization is rapidly reshaping the field of biochemistry, with emerging technologies such as microfluidics and "lab-on-a-chip" devices taking the world by storm. Chemical reactions that were normally conducted in flasks and tubes can now be carried out within tiny water droplets not larger than a few millionths of a liter. Particularly, in droplet-array sandwiching techniques, such tiny droplets are orderly laid out on two parallel flat surfaces opposite to each other. By bringing the top surface close enough to the bottom one, each top droplet makes contact with the opposite bottom droplet, exchanging chemicals and transferring particles or even cells. In quite a literal way, these droplets can act as small reaction ...

Study: Impulsiveness tied to faster eating in children, can lead to obesity

2021-07-07
BUFFALO, N.Y -- Children who eat slower are less likely to be extroverted and impulsive, according to a new study co-led by the University at Buffalo and Children's Hospital of Philadelphia. The research, which sought to uncover the relationship between temperament and eating behaviors in early childhood, also found that kids who were highly responsive to external food cues (the urge to eat when food is seen, smelled or tasted) were more likely to experience frustration and discomfort and have difficulties self-soothing. These findings are critical because faster eating and greater responsiveness to food cues have been linked to obesity risk in children, ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] NASA space lasers map meltwater lakes in Antarctica with striking precision