(Press-News.org) Sugarcane is one of the most productive plants on Earth, providing 80 percent of the sugar and 30 percent of the bioethanol produced worldwide. Its size and efficient use of water and light give it tremendous potential for the production of renewable value-added bioproducts and biofuels.
But the highly complex sugarcane genome poses challenges for conventional breeding, requiring more than a decade of trials for the development of an improved cultivar.
Two recently published innovations by University of Florida researchers at the Department of Energy's Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) demonstrated the first successful precision breeding of sugarcane by using CRISPR/Cas9 genome editing -- a far more targeted and efficient way to develop new varieties.
CRISPR/Cas9 allows scientists to introduce precision changes in almost any gene and, depending on the selected approach, to turn the gene off or replace it with a superior version. The latter is technically more challenging and has rarely been reported for crops so far.
In the first report, researchers demonstrated the ability to turn off variable numbers of copies of the magnesium chelatase gene, a key enzyme for chlorophyll biosynthesis in sugarcane, producing rapidly identifiable plants with light green to yellow leaves. Light green plants did not show growth reduction and may require less nitrogen fertilizer to produce the same amount of biomass. That study, published in Frontiers in Genome Editing, was led by CABBI researchers Fredy Altpeter, Professor of Agronomy at the University of Florida's Institute of Food and Agricultural Sciences (IFAS), and Ayman Eid, a Postdoctoral Research Associate in Altpeter's lab.
The second study, also published in Frontiers in Genome Editing, achieved efficient and reproducible gene targeting in sugarcane, demonstrating the precise substitution of multiple copies of the target gene with a superior version, conferring herbicide resistance. Scientists co-introduced a repair template together with the gene-editing tool to direct the plant's own DNA repair process so that one or two of the thousands of building blocks of the gene, called nucleotides, were precisely replaced in the targeted location. The result was that the gene product was still fully functional and could no longer be inhibited by the herbicide. That study was led by Altpeter and former CABBI Postdoc Mehmet Tufan Oz.
Altpeter's lab, part of CABBI's groundbreaking project to develop new oil-rich sugarcane varieties, has pioneered research with sugarcane genome editing using the TALEN gene-editing system. But the two recent publications are the first to successfully demonstrate CRISPR gene-editing in sugarcane as well as gene targeting for precision nucleotide substitution in sugarcane using any genome-editing tool.
"Now we have very effective tools to modify sugarcane into a crop with higher productivity or improved sustainability," Altpeter said. "It's important since sugarcane is the ideal crop to fuel the emerging bioeconomy."
Sugarcane is a hybrid of two kinds of parent plants, so it has multiple sets of chromosomes rather than just two, as with humans or "diploid" plants. That creates genetic redundancy -- with many sets of genes doing the same job -- which may contribute to the plant's productivity: If one set breaks, there's a backup. But it makes sugarcane extremely difficult to modify. Crop scientists have to target all the genes and copies that govern a particular trait in order to make improvements.
With conventional breeding, two types of sugarcane are cross-bred to reshuffle the genetic information present in each parent in the hope of enhancing a desirable trait such as disease resistance. The problem is that genes are transferred from the parents to offspring in blocks, and desirable traits are often linked with deleterious genetic material. This means scientists often have to do multiple rounds of backcrossing and screen thousands of plants to restore the elite background, or underlying plant characteristics, in addition to improving one trait they’re attempting to modify. The process is more time-consuming and costly in plants with complex genomes like sugarcane.
Precise gene-editing technologies such as CRISPR-Cas9 offer a much more targeted path to crop improvement because it avoids the reshuffling of genetic information and simply changes inferior gene versions into superior ones. Given the sugarcane genome's complexity, Altpeter and his team focused initially on genes that control noticeable traits -- leaf color and herbicide resistance -- so they could determine if the edits worked.
Beyond providing an easily identifiable phenotype, the targeted genes may prove useful in future research. Changing the chlorophyll content of sugarcane has the potential to increase canopy level photosynthesis or reduce the requirement for nitrogen fertilizer, based on previous plant modeling. Sugarcane is a tall, dense plant, with the top leaves getting lots of sun and shading lower foliage. If the upper leaves have less chlorophyll, sunlight can penetrate deeper into the plant, increasing its biomass with the same amount of light and less fertilizer. Herbicide resistance is not only an agronomically desirable trait to facilitate weed management; it will also facilitate future gene-editing efforts by enabling suppression of non-edited plant cells.
At CABBI, Altpeter and his team are already applying the results to develop improved sugarcane lines. Sugarcane has many different gene targets that can translate into more biomass or the production of lipids or specialty fatty acids -- all of which would advance CABBI's goals to produce fuels and other products from plants to replace petroleum. Because the crop is already harvested and processed for sugar extraction, the basic infrastructure to process its raw material into a product on a shelf is essentially in place.
"Adding value streams is relatively inexpensive compared to other crop alternatives," Altpeter said.
INFORMATION:
Coauthors on the first study included CABBI visiting scientist Chakravarthi Mohan, CABBI Lab Technician Sara Sanchez, and former CABBI Postdoc Duoduo Wang, all in Altpeter's lab. Coauthors on the second study included Angelika Altpeter, Ratna Karan, and Aldo Merotto of the Agronomy Department at UF/IFAS.
Butterflies and moths have beautiful wings: the bright flare of an orange monarch, the vivid stripes of a swallowtail, the luminous green of a Luna moth. But some butterflies flutter on even more dramatic wings: parts of their wing, or sometimes the entire wing itself, are actually transparent.
Many aquatic organisms, including jellies and fish, are transparent. But transparent butterfly and moth wings are so arresting that merely catching a glimpse of one typically causes a human to lunge for a camera or at least point it out to their friends. These enigmatic, transparent butterfly wings have not been studied comprehensively.
Doris Gomez and Marianne Elias (French National Center for Scientific Research) set out to change that. Last week, along with a multidisciplinary ...
Chronic alcohol abuse and hepatitis can injure the liver and lead to fibrosis, the buildup of collagen and scar tissue. As a potential approach to treating liver fibrosis, University of California San Diego School of Medicine researchers and their collaborators are looking for ways to stop liver cells from producing collagen.
"So we thought...what if we take immunotoxins and try to get them to kill collagen-producing cells in the liver," said team lead Tatiana Kisseleva, MD, PhD, associate professor of surgery at UC San Diego School of Medicine. "If these antibodies carrying toxic molecules can find and bind the cells, the cells will eat up the 'gift' and die."
In a study published July 12, 2021 in Proceedings of the National Academy of Sciences, Kisseleva ...
Having a home near a busy airport certainly has its perks. It is close to many establishments and alleviates the problem of wading through endless traffic to catch flights. But it does come at a cost -- tolerating the jarring sounds of commercial airplanes during landing and takeoff.
Researchers at Texas A&M University have conducted a computational study that validates using a shape-memory alloy to reduce the unpleasant plane noise produced during landing. They noted that these materials could be inserted as passive, seamless fillers within airplane wings ...
MRI-guided focused ultrasound combined with microbubbles can open the blood-brain barrier (BBB) and allow therapeutic drugs to reach the diseased brain location under the guidance of MRI. It is a promising technique that has been shown safe in patients with various brain diseases, such as Alzheimer's diseases, Parkinson's disease, ALS, and glioblastoma. While MRI has been commonly used for treatment guidance and assessment in preclinical research and clinical studies, until now, researchers did not know the impact of the static magnetic field generated by the MRI scanner on the BBB opening size and ...
Children with a devastating genetic disorder characterized by severe motor disability and developmental delay have experienced sometimes dramatic improvements in a gene therapy trial launched at UCSF Benioff Children's Hospitals.
The trial includes seven children aged 4 to 9 born with deficiency of AADC, an enzyme involved in the synthesis of neurotransmitters, particularly dopamine, that leaves them unable to speak, feed themselves or hold up their head. Six of the children were treated at UCSF and one at Ohio State Wexner Medical Center.
Children in the study experienced improved motor function, better mood, and longer sleep, and were able to interact more fully with their ...
Historically, shared resources such as forests, fishery stocks, and pasture lands have often been managed with an aim toward averting "tragedies of the commons," which are thought to result from selfish overuse. Writing in BioScience, Drs. Senay Yitbarek (University of North Carolina at Chapel Hill), Karen Bailey (University of Colorado Boulder), Nyeema Harris (Yale University), and colleagues critique this model, arguing that, all too often, such conservation has failed to acknowledge the complex socioecological interactions that undergird the health of resource ...
Learning changes the brain, but when learning Braille different brain regions strengthen their connections at varied rates and time frames. A new study published in JNeurosci highlights the dynamic nature of learning-induced brain plasticity.
Learning new skills alters the brain's white matter, the nerve fibers connecting brain regions. When people learn to read tactile Braille, their somatosensory and visual cortices reorganize to accommodate the new demands. Prior studies only examined white matter before and after training, so the exact time course of the changes was not known.
Molendowska and Matuszewski et al. used diffusion MRI to measure changes in the white matter strength of sighted adults as they learned Braille over the course of eight months. They took measurements ...
Imagine sitting out in the sun, reading a digital screen as thin as paper, but seeing the same image quality as if you were indoors. Thanks to research from Chalmers University of Technology, Sweden, it could soon be a reality. A new type of reflective screen - sometimes described as 'electronic paper' - offers optimal colour display, while using ambient light to keep energy consumption to a minimum.
Traditional digital screens use a backlight to illuminate the text or images displayed upon them. This is fine indoors, but we've all experienced the difficulties of viewing such screens in bright sunshine. Reflective screens, however, attempt to use the ambient light, mimicking the way our eyes respond to natural paper.
"For reflective screens to compete with the energy-intensive ...
Smoking among young teens has become an increasingly challenging and costly public healthcare issue. Despite legislation to prevent the marketing of tobacco products to children, tobacco companies have shrewdly adapted their advertising tactics to circumvent the ban and maintain their access to this impressionable--and growing--market share.
How they do it is the subject of a recent study led by Dr. Yael Bar-Zeev at Hebrew University of Jerusalem (HU)'s Braun School of Public Health and Community Medicine at HU-Hadassah Medical Center. She also serves as Chair of the Israeli Association for Smoking Cessation and Prevention, and teamed up with colleagues at HU and George Washington University. They published their findings in Nicotine and Tobacco Research.
Their study ...
July 12, 2021 - Transitions between healthcare sites - such as from the hospital to home or to a skilled nursing facility - carry known risks to patient safety. Many programs have attempted to improve continuity of care during transitions, but it remains difficult to establish and compare the benefits of these complex interventions. An update on patient-centered approaches to transitional care research and implementation is presented in a supplement to the August issue of Medical Care, sponsored by the Patient-Centered Outcomes Research Institute (PCORI). Medical Care is published in the Lippincott portfolio by Wolters ...