PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter

Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter
2021-07-16
(Press-News.org) Neuromodulation at high spatial resolution has been an invaluable approach for treating neurological diseases and advancing fundamental knowledge in the field of neuroscience, as firing of a small population or even single neurons can specifically alter animal behavior or brain state. Optogenetics is a powerful method capable of modulating population neural activity in rodents, yet its requirement for viral transfection limits its applications in nonhuman primates and humans. As a rapidly growing modality, focused ultrasound has been harnessed in a myriad of brain neuromodulation applications. However, conventional piezo-based transducers offer a spatial resolution of several millimeters. It is also challenging to directly measure electrophysiological response of cells under ultrasound stimulation using whole-cell patch-clamp electrophysiology, which is the gold standard technique for high-fidelity analysis of the biophysical mechanisms of neuromodulation. New strategies with essential capabilities, including single and subcellular precision and integration of single cell electrophysiology recording, are still sought to enable the understanding of mechanical stimulation at the single cell level and to offer high precision for potential clinical applications.

In a new paper published in Light Science & Application, a team of scientists, led by Professors Chen Yang and Ji-xin Cheng from Boston University have developed a tapered fiber optoacoustic emitter (TFOE), which exploits the optoacoustic effect and generates acoustic field localized within 40 μm, for photoacoustic neural stimulation at the single cell and subcellar level. The significant advancement of TFOE in both spatial resolution and optoacoustic conversion efficiency are achieved by fiber engineering, material modification and a new deposition method. Spatially, they demonstrated acoustic stimulation with an unprecedent precision. Temporally, single acoustic pulse with duration of sub-microsecond generated by TFOE successfully activated neurons, which was found as the shortest acoustic stimuli for successful neuromodulation. Importantly, the near field acoustic wave generated by TFOE allowed optoacoustic stimulation with simultaneously monitoring cell response using whole cell patch clamp recording. Their studies revealed cell-type-specific response to acoustic stimulation for excitatory and inhibitory neurons.

These findings show the exciting potential of TFOE as a platform technology for non-genetic stimulation of the neural system with high spatial and temporal precision. Many new research opportunities will be opened up by the new capabilities offered by TFOE. For example, by unveiling the cell-type-specific threshold to acoustic stimulation for excitatory and inhibitory neurons, different acoustic pressure and duration can be applied to achieve certain cell-type selectivity in multiscale brain region. Meanwhile, single acoustic pulse with duration of sub-microsecond can be further fine-tuned to design the temporal profile of stimulus, which will allow controlling the neuron activity patterns to mimic natural neural codes. Furthermore, acoustic stimulation of neurons, with pharmacologically or genetically modifying ion channels integrated with patch clamp, provides new insight to the electrophysiological mechanisms of mechanical neuromodulation. Without any metal components, the TFOE is immune to electromagnetic interference and is compatible with functional magnetic resonance imaging (fMRI), which holds promise for future study toward understanding of behavior and disease in human patients. Given the increasing popularity of ultrasound neuromodulation, the compactness, cost-effectiveness and versatility of TFOE open broad opportunities to utilize the optoacoustic effect in the field of neuroscience, the scientists forecast.

INFORMATION:


[Attachments] See images for this press release:
Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter

ELSE PRESS RELEASES FROM THIS DATE:

Ludwig Cancer Research study reveals even transient chromosomal errors can initiate cancer

2021-07-16
JULY 15, 2021, NEW YORK - A Ludwig Cancer Research study has found that inducing random chromosome instability (CIN) events in mice for as little as one week is enough to trigger harmful chromosomal patterns in cells that spur the formation of tumors. "We show that you don't need chronic, lifelong chromosomal mistakes to produce tumorigenesis at a quite respectable frequency," said Don Cleveland, Member of the Ludwig Institute for Cancer Research, San Diego, who led the study with Floris Foijer of the University of Groningen, in The Netherlands. "A very transient exposure would likely be sufficient to drive a very substantial increase in tumorigenesis." The finding, detailed this week in the journal END ...

Evaluation of India's 'Mission Indradhanush' finds improvements in vaccination outcomes

2021-07-16
Washington, DC / New Delhi, India - Researchers at CDDEP recently published 'Improving vaccination coverage and timeliness through periodic intensification of routine immunization: evidence from Mission Indradhanush' where they evaluated the performance of India's Mission Indradhanush (MI) child vaccination campaign -- a periodic intensification of the routine immunization program. Each year, 1.2 million Indian children die, accounting for a fifth of global under-5 deaths. Over 400,000 of these deaths are from vaccine-preventable diseases. An estimated 38% of Indian children under the age of two years were not-fully-immunized in 2016. Additionally, vaccinated children received 23%-35% of the doses of polio, diphtheria-pertussis-tetanus ...

Psychiatric patients at increased risk of COVID-19 hospitalization and mortality

2021-07-16
Main points Strong evidence that patients with pre-existent mental disorders are twice as likely to die or be hospitalised after SARS-CoV-2 infection Psychotic and mood disorders are linked with COVID-19-associated mortality, as are exposure to antipsychotic and anxiolytic treatments. Patients with substance use disorders are at increased risk of hospitalisation. In the largest systematic review and meta-analysis to date on COVID-19 outcomes in individuals with psychiatric disorders, the odds of dying or being hospitalized following COVID-19 ...

Scientists get to the bottom of deep Pacific ventilation

2021-07-16
The team's findings, with important implications for ocean biogeochemistry and climate science, have been published by Nature Communications in a paper by Associate Professor Mark Holzer from UNSW Science's School of Mathematics & Statistics, with co-authors Tim DeVries (UCSB) and Casimir de Lavergne (LOCEAN). "The deep North Pacific is a vast reservoir of remineralized nutrients and respired carbon that have accumulated over centuries," says A/Prof. Holzer. "When these deep waters are returned to the surface, their nutrients support biological production and their dissolved CO2 can be released into the atmosphere. As such, the deep Pacific plays a key ...

Noninvasive, label-free optical method visualizes deep, cellular brain disease in vivo

Noninvasive, label-free optical method visualizes deep, cellular brain disease in vivo
2021-07-16
Central nervous system (CNS) diseases such as Alzheimer's disease (AD) manifest early at the microscopic (i.e. cellular) level, deep in the brain. Yet, optical microscopes that can see cells in the living brain are superficial or invasive. Whole brain imaging techniques such as magnetic resonance imaging are deep and non-invasive, but lack cellular resolution. In a new paper published in Light Science & Application, a team of scientists, led by Professor Vivek J. Srinivasan from the Departments of Ophthalmology and Radiology and Tech4Health Institute, ...

Complexity yields simplicity: The shifting dynamics of temperate marine ecosystems

Complexity yields simplicity: The shifting dynamics of temperate marine ecosystems
2021-07-16
Shizuoka, Japan - At Shikine Island, Japan, kelp forests and abalone fisheries were once common, but over the last twenty years they have disappeared. Now, researchers from Japan have discovered that these temperate coastal marine ecosystems are becoming more "simple", losing biodiversity, complexity and their aesthetic values. In a study published this month, researchers from the University of Tsukuba and international collaborators explored how the combined effects of ocean warming and acidification are changing temperate coastal marine ecosystems. Tropical coastal seas are synonymous with coral reefs. As ocean temperatures cool toward the poles, corals give way to kelp as the main habitat-forming species. The shift from coral to kelp can clearly be seen along the 2000 km ...

Future information technologies: Topological materials for ultrafast spintronics

Future information technologies: Topological materials for ultrafast spintronics
2021-07-16
The laws of quantum physics rule the microcosm. They determine, for example, how easily electrons move through a crystal and thus whether the material is a metal, a semiconductor or an insulator. Quantum physics may lead to exotic properties in certain materials: In so-called topological insulators, only the electrons that can occupy some specific quantum states are free to move like massless particles on the surface, while this mobility is completely absent for electrons in the bulk. What's more, the conduction electrons in the "skin" of the material are necessarily spin polarized, and form robust, metallic surface states that could be utilized as channels in which to drive pure spin currents on femtosecond ...

Researchers reveal cause of Jupiter's x-ray aurorae

Researchers reveal cause of Jupiters x-ray aurorae
2021-07-16
An international research team led by YAO Zhonghua from the Institute of Geology and Geophysics of the Chinese Academy of Sciences (IGGCAS) has explained the cause of Jupiter's X-ray aurorae, a mystery that has puzzled scientists for 40 years. The findings were published in Science Advances on July 9. It is the first time planetary researchers have described the entire causality chain for Jupiter's X-ray auroral flares. The mechanism in producing X-ray auroral flares at Jupiter may have potential applications in X-ray astronomy. The X-ray auroral spectra tell us these aurorae are produced by heavy ions with energies in the ...

Cellular push and pull, a key to the body's response to processes such as cancer

Cellular push and pull, a key to the bodys response to processes such as cancer
2021-07-16
From the vocal cords that produce our voice, to our heartbeat, our body's cells are constantly subjected to mechanical forces that steadily change their response to these stimuli, regulating vital processes, in healthy individuals and in diseases such as cancer alike. Nevertheless, despite their importance, we remain largely ignorant of how cells sense and respond to these forces. Now, an international team co-led by the researcher Pere Roca-Cusachs, from the Institute for Bioengineering of Catalonia (IBEC), and Isaac Almendros, a researcher at the Respiratory Diseases Networking Biomedical Research Centre (CIBERES) and IDIBAPS, both professors at the Faculty of Medicine and Health Sciences of the University of Barcelona (UB), has proved that what determines mechanical ...

Cellular uptake of nanoparticles keys for further development of temperature sensing

Cellular uptake of nanoparticles keys for further development of temperature sensing
2021-07-16
The article represents the transmission electron microscopy (TEM) and flow cytometry study of A-549 (human lung carcinoma) cellular uptake of Pr3+:LaF3 nanoparticles. The Pr3+:LaF3 nanoparticles are promising platforms for cell nano-sensors. The objective of the work was to study the influence of nanoparticle morphology (nanoplates and nanospheres) on cytotoxicity and the dynamic of cellular uptake. In the flow cytometry method, the cells go through a small tube (as a flow) and are irradiated by a laser. Cells scatter the laser light, and this scattering ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter