New insight into "training" highly reactive chemical compounds
Are targeted attacks possible?
2021-07-20
(Press-News.org) Led by Dr Jonas Warneke, researchers at the Wilhelm Ostwald Institute of Physical and Theoretical Chemistry at Leipzig University have made a decisive advance in the study of one type of highly reactive particles. Based on their research, they now understand the "binding preferences" of these particles.
Their research serves as the basis for the targeted use of these highly reactive molecules, for example, to generate new molecular structures or to bind hazardous chemical "waste" and in this way dispose of it. The researchers have now published their findings in the journal Chemistry - A European Journal, and their research was featured on the cover thanks to the excellent review they received.
What molecules and people have in common
Molecules and people actually have a lot in common. There are those who are lethargic and prefer to keep to themselves, and there are those who are very active and outgoing. And then there are those who are so dissatisfied with their situation that they haphazardly attack everyone in their surroundings. If you want to get them to behave in a social manner, you must first understand the reason for their attacks. Chemists work with highly reactive compounds in a similar way. Given their exceptional reactivity, targeted syntheses (the production of a specific molecule) with these compounds are extremely difficult. If you want these highly reactive compounds to react with a specific molecule, this usually fails because they instead react with the solvent in their environment. They bind with everything that comes across their path. "But this is, in fact, the huge opportunity that these compounds offer. They are able to induce even very unreactive small molecules and atoms to react in ways that would not have been otherwise possible", explains Warneke.
Directing highly reactive compounds
For several years now, researchers at the Wilhelm Ostwald Institute have investigated a special type of highly reactive compound with twelve boron atoms that can bind even the very unreactive noble gases. Eleven boron atoms have a binding partner (called a substituent), while the twelfth boron atom carries out the attack. How can we direct these highly reactive compounds so that targeted syntheses will be possible in the future? To answer this question, the researchers produced these highly reactive compounds in the solvent-free and airless environment of a mass spectrometer and thus isolated the compounds in such a way that there were no compounds in their environment for them to attack.
In a second step, the highly reactive compounds were selectively fed reaction partners that they attacked. The researchers found that the "aggressiveness" of the compounds changed when the substituents were altered. "This wasn't surprising at first", Warneke says. "However, we then found that the propensity to attack did not simply become stronger or weaker as a result of this exchange of atoms, but instead it depended strongly on which reaction partner was present." The researchers were able to show that the substituents have a strong influence on the reactivity and trace the reaction preferences back to a very specific chemical bond that forms to varying degrees depending on the reaction partner.
This finding surprised the researchers because in chemistry this type of bond is more commonly found with metal compounds and not with the boron compounds studied, which belong to the non-metal compounds. This hypothesis was finally proven beyond reasonable doubt by special experimental and theoretical methods carried out by the early career research group under Warneke in partnership with the working groups led by Prof. Dr. Knut Asmis and Prof. Dr. Ralf Tonner, both from the Wilhelm Ostwald Institute. The group will continue its research together with its partners from Wuppertal. They hope to be able to use molecules such as carbon monoxide or nitrogen from the air in this way for targeted syntheses. But Warneke says there is still a long way to go before that happens.
INFORMATION:
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-07-20
COLUMBUS, Ohio - Scientists who study glacier ice have found viruses nearly 15,000 years old in two ice samples taken from the Tibetan Plateau in China. Most of those viruses, which survived because they had remained frozen, are unlike any viruses that have been cataloged to date.
The findings, published today in the journal Microbiome, could help scientists understand how viruses have evolved over centuries. For this study, the scientists also created a new, ultra-clean method of analyzing microbes and viruses in ice without contaminating it.
"These glaciers were formed gradually, and along with dust and ...
2021-07-20
In order to correctly separate vehicles into classes, for instance for mobility pricing, one must be able to clearly distinguish mid-sized cars from upper class cars or small cars from compact cars. But this is becoming increasingly difficult: On photos, an Audi A4 looks almost the same as an Audi A6, a Mini One looks similar to a Mini Countryman. To date, there is no independent procedure for doing this.
Thus far, the classes in each country have been determined by experts - to a large extend at their own discretion. Empa researcher Naghmeh Niroomand has now developed a system that can classify cars worldwide based on their dimensions. Purely mathematical and fair. Thanks to it, the current classification ...
2021-07-20
FORT LAUDERDALE/DAVIE, Fla. - It's good to have friends.
Most humans have experienced social anxiety on some level during their lives. We all know the feeling - we show up to a party thinking it is going to be chock full of friends, only to find nearly all total strangers. While we typically attribute the long-lasting bonds of social familiarity to complex thinkers like humans, growing evidence indicates that we underestimate the importance of friendship networks in seemingly "simple" animals, like fish, and its importance for survival in the wild. To better understand how familiarity impacts social fishes, a group of research scientists studied this idea using schooling coral reef fish.
"We studied how the presence of ...
2021-07-20
FRANKFURT, GERMANY. When SARS-CoV-2 infects a cell, it introduces its RNA into it and re-programmes it in such a way that the cell first produces viral proteins and then whole viral particles. In the search for active substances against SARS-CoV-2, researchers have so far mostly concentrated on the viral proteins and on blocking them, since this promises to prevent, or at least slow down, replication. But attacking the viral genome, a long RNA molecule, might also stop or slow down viral replication.
The scientists in the COVID-19-NMR consortium, which is coordinated by Professor Harald Schwalbe from the Institute of Organic Chemistry and Chemical Biology at Goethe University, have now completed an important ...
2021-07-20
CAMBRIDGE, MA -- Since the Covid-19 pandemic began last year, face masks and other personal protective equipment have become essential for health care workers. Disposable N95 masks have been in especially high demand to help prevent the spread of SARS-CoV-2, the virus that causes Covid-19.
All of those masks carry both financial and environmental costs. The Covid-19 pandemic is estimated to generate up to 7,200 tons of medical waste every day, much of which is disposable masks. And even as the pandemic slows down in some parts of the world, health care workers are expected to continue wearing masks most of the time.
That toll could be dramatically cut by adopting reusable masks, according to a new study from MIT that has calculated the financial ...
2021-07-20
With the looming threat of climate change, it is high time we embrace renewable energy sources on a larger scale. Photovoltaic systems, which generate electricity from the nearly limitless supply of sunlight energy, are one of the most promising ways of generating clean energy. However, integrating photovoltaic systems into existing power grids is not a straightforward process. Because the power output of photovoltaic systems depends heavily on environmental conditions, power plant and grid managers need estimations of how much power will be injected by photovoltaic systems so as to plan optimal generation and maintenance schedules, among other important operational aspects.
In line with modern trends, if something needs predicting, you can safely ...
2021-07-20
Researchers in the BOTTLE Consortium, including from the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Portsmouth, have identified using enzymes as a more sustainable approach for recycling polyethylene terephthalate (PET), a common plastic in single-use beverage bottles, clothing, and food packaging that are becoming increasingly relevant in addressing the environmental challenge of plastic pollution. An analysis shows enzyme-recycled PET has potential improvement over conventional, fossil-based methods of PET production across a broad spectrum of energy, carbon, and socioeconomic impacts.
The concept, if further developed and implemented at scale, could lead to ...
2021-07-20
Neurons communicate through rapid electrical signals that regulate the release of neurotransmitters, the brain's chemical messengers. Once transmitted across a neuron, electrical signals cause the juncture with another neuron, known as a synapse, to release droplets filled with neurotransmitters that pass the information on to the next neuron. This type of neuron-to-neuron communication is known as evoked neurotransmission.
However, some neurotransmitter-packed droplets are released at the synapse even in the absence of electrical impulses. These miniature release events -- or ...
2021-07-20
Every spring, the Daylight Saving Time shift robs people of an hour of sleep - and a new study shows that DNA plays a role in how much the "spring forward" time change affects individuals.
People whose genetic profile makes them more likely to be "early birds" the rest of the year can adjust to the time change in a few days, the study shows. But those who tend to be "night owls" could take more than a week to get back on track with sleep schedule, according to new data published in Scientific Reports by a team from the University of Michigan.
The study uses data from continuous sleep tracking ...
2021-07-20
Forensics specialists can use a commercial assay targeting mitochondrial DNA to accurately discriminate between wolf, coyote and dog species, according to a new study from North Carolina State University. The genetic information can be obtained from smaller or more degraded samples, and could aid authorities in prosecuting hunting jurisdiction violations and preserving protected species.
In the U.S., certain wolf subspecies or species are endangered and restricted in terms of hunting status. It is also illegal to deliberately breed wolves or coyotes with domesticated dogs.
"If ...
LAST 30 PRESS RELEASES:
[Press-News.org] New insight into "training" highly reactive chemical compounds
Are targeted attacks possible?