(Press-News.org) EAST LANSING, Mich. - In the wild, inheriting advantageous physical traits may be the difference between a long life and a short one. But for the spotted hyena, another kind of inheritance, one that has nothing to do with genetics, turns out to be extremely important for health and longevity -- social networks inherited from their mothers.
A new study, based on 27 years of observational data from Michigan State University Distinguished Professor Kay Holekamp, expands a previously established theoretical model of spotted hyena social networking to show how these networks emerge, how long they last and how they affect a hyena's life trajectory.
The paper is featured as the front cover for the journal Science.
"There are a lot of species where genetic inheritance to be bigger and stronger allows an animal to dominate, but that doesn't happen in hyena society," said Holekamp, professor in the Department of Integrative Biology and director of the interdisciplinary program in Ecology, Evolution and Behavior who co-authored the paper. "We see tiny cubs dominating great huge males, so we know body size is not a good predictor of who will be socially dominant in spotted hyenas."
Co-authors Erol Akcay, associate professor at the University of Pennsylvania, and Amiyaal Ilany, senior lecturer at Israel's Bar-Ilan University, used sophisticated modeling techniques of social evolution to establish general theoretical principles for how social networks among hyenas are passed on. But to test and expand the model, they needed data from the wild.
"The foundation of this paper was laid when Amiyaal asked to have access to our hyena data because he wanted to model association patterns in hyenas, and I'm always delighted to share data," said Holekamp, whose research group has close observational records for several generations of hyena from the Masai Mara National Game Reserve in Kenya.
By meticulously tracking of hundreds of individual hyenas based on their specific spot patterns, social networks could be determined by proximity -- who spent time with whom, how closely and for how long. Combining this rich dataset with the social evolution models developed by Akçay and Ilany, the team was able to show that, remarkably, hyena cubs become friends with their mothers' close associates very early in life.
"We knew that the social structure of hyenas is based in part on one's rank in the agonistic hierarchy, which we know is inherited from mothers," Akçay said. "But what we found, that affiliative, or friendly interactions are also inherited, hadn't been shown."
Networks of mothers and their offspring are similar early on because hyena cubs stick close to their mothers for the first two years of life. But the researchers noticed that even as the young hyenas stopped spending so much time in proximity with their mothers, they continued to sustain similar networks. This was particularly true for female offspring, who generally remain members of the clan for life.
"We have data in some cases showing that the network similarity between mothers and offspring, especially female offspring, was still very high after six or so years," Ilany said. "You may not be seeing your mother as often, or she even may have died, but you still have similar friends."
Importantly, higher-ranking mothers imprinted their social networks on their cubs more accurately and for a longer time than lower-ranking mothers, and these networks had a direct effect on life-span and reproductive success.
Mother-offspring pairs with more similar social networks lived longer, the team found, underscoring how factors other than genetics hold sway in key evolutionary outcomes.
"One explanation for why inheritance of social networks works better for high- than low-ranking hyenas may be that low-ranking females tend to go off on their own more often to avoid competition with higher-ranking hyenas, so their cubs have fewer learning opportunities than cubs of high-ranking females," Holekamp said. "This shows the beauty of the hyena's fusion-fission society. The low-rankers can make the best of a bad situation by using separation to get away from their competition."
The paper is just one example of how the unprecedented amount of data collected by Holekamp's research group since the 1980s is leading to an explosion of new research and insight into the social evolution of hyenas.
"The long-term nature of our research allows scientists to address questions about fitness consequences that you can't do with a long-lived organism unless you sit and watch them year after year after year," Holekamp said. "We are at a point where we have really fabulous fitness data in addition to documenting years of interesting behavioral phenomena, and we can follow individuals over time to find out what the fitness consequences are of these behavior patterns."
INFORMATION:
Two recently published studies available on the National Institutes of Health (NIH) website indicate Epstein-Barr virus (EBV) reactivation may play a role both in the development of long COVID symptoms, as well as severe COVID-19 cases.
The first evidence linking EBV reactivation to long COVID symptoms was discovered by Gold et al. (2021) and published in Pathogens. This study can be viewed on the NIH website here: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233978/
"We ran Epstein-Barr virus serological tests on COVID-19 patients at least 90 days after testing positive for SARS-CoV-2 infection, comparing EBV ...
Alexandria, Va., USA - Walter Siqueira, University of Saskatchewan, Saskatoon, Canada, presented the poster "Self-collected Saliva and Courier Service - A Feasible Diagnostic Strategy for COVID-19" at the virtual 99th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 50th Annual Meeting of the American Association for Dental Research (AADR) and the 45th Annual Meeting of the Canadian Association for Dental Research (CADR), on July 21-24, 2021.
Saliva has been proposed as a convenient and cost-effective biofluid for diagnostic purposes and in vitro studies have shown that the addition of stabilizers to saliva preserves it for up to 7-10 days at room temperature, but its translational application ...
Although Enterococcus faecalis is usually an innocuous member of the bacterial community in the human gut, it can also cause several infections, including liver disorders. The bacteria produce cytolysins, which are molecules that destroy cells. In a new study, researchers have uncovered how they do so.
"Your chances of dying increase by 5-fold when you get infected by E. faecalis that can make cytolysin compared to those that cannot," said Wilfred van der Donk (MMG), a professor of chemistry and investigator of the Howard Hughes Medical Institute. "Cytolysin is an important molecule and it has been known since the 1930s, our lab determined the ...
Researchers from the University of Southern California (USC) Department of Computer Science and NVIDIA have unveiled a new simulator for robotic cutting that can accurately reproduce the forces acting on a knife as it slices through common foodstuffs, such as fruit and vegetables. The system could also simulate cutting through human tissue, offering potential applications in surgical robotics. The paper was presented at the Robotics: Science and Systems (RSS) Conference 2021 on July 16, where it received the Best Student Paper Award.
In the past, researchers have had trouble creating intelligent ...
Los Alamos, N.M., July 21, 2021--A team of scientists at Los Alamos National Laboratory propose that modulated quantum metasurfaces can control all properties of photonic qubits, a breakthrough that could impact the fields of quantum information, communications, sensing and imaging, as well as energy and momentum harvesting. The results of their study were released yesterday in the journal Physical Review Letters, published by the American Physical Society.
"People have studied classical metasurfaces for a long time," says Diego Dalvit, who works in the Condensed Matter and Complex Systems group at the Laboratory's Theoretical Division. "But we came up with this new idea, which was to modulate in time and space the optical properties of ...
Northwestern University researchers have developed a new framework using machine learning that improves the accuracy of interatomic potentials -- the guiding rules describing how atoms interact -- in new materials design. The findings could lead to more accurate predictions of how new materials transfer heat, deform, and fail at the atomic scale.
Designing new nanomaterials is an important aspect of developing next-generation devices used in electronics, sensors, energy harvesting and storage, optical detectors, and structural materials. To design these materials, researchers create interatomic potentials through atomistic modeling, a computational approach that predicts how these materials behave by accounting for their ...
In a recently published paper, a research team, led by University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science Professor Emeritus Joseph M. Prospero, chronicles the history of African dust transport, including three independent "first" discoveries of African dust in the Caribbean Basin in the 1950s and 1960s.
Every year, mineral-rich dust from North Africa's Sahara Desert is lifted into the atmosphere by winds and carried on a 5,000-mile journey across the North Atlantic to the Americas. African dust contains iron, phosphorus and other important nutrients that are essential for life in marine and terrestrial ...
BROOKLYN, New York, Weekday, Month xx, 2021 - The remarkable structural properties of the Venus' flower basket sponge (E. aspergillum) might seem fathoms removed from human-engineered structures. However, insights into how the organism's latticework of holes and ridges influences the hydrodynamics of seawater in its vicinity could lead to advanced designs for buildings, bridges, marine vehicles and aircraft, and anything that must respond safely to forces imposed by the flow of air or water.
While past research has investigated the structure of the sponge, there have been few studies of the hydrodynamic fields surrounding and penetrating the organism, and whether, besides improving its mechanical ...
BROOKLYN, New York, Wednesday, July 21, 2021 - This week, at the 38th International Conference on Machine Learning (ICML 21), researchers at the END ...
Efforts to understand cardiac disease progression and develop therapeutic tissues that can repair the human heart are just a few areas of focus for the Feinberg research group at Carnegie Mellon University. The group's latest dynamic model, created in partnership with collaborators in the Netherlands, mimics physiologic loads on engineering heart muscle tissues, yielding an unprecedented view of how genetics and mechanical forces contribute to heart muscle function.
"Our lab has been working for a long time on engineering and building human heart muscle tissue, so we can better ...