PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Clearing a path for non-invasive muscle therapy for the elderly

Controlling inflammation enables injured aged muscle recovery via non-invasive mechanical loading, offering promise for the future of mechanotherapies for elderly patients.

2023-03-22
(Press-News.org)

Clearing a path for non-invasive muscle therapy for the elderly

Controlling inflammation enables injured aged muscle recovery via non-invasive mechanical loading, offering promise for the future of mechanotherapies for elderly patients.

By Benjamin Boettner

(BOSTON) — Mechanotherapy, the concept of using mechanical forces to stimulate tissue healing, has been used for decades as a form of physical therapy to help heal injured muscles.  However, the biological basis and optimal settings for mechanotherapies are still poorly understood, especially with respect to elderly patients. Given the well-known decline in healing ability that occurs with age, elderly patients stand to benefit greatly from an effective, non-invasive musculoskeletal treatment approach. 

A new multidisciplinary study helps close this knowledge gap of mechanotherapies’ effectiveness in aged muscle. The study was performed by researchers at the Wyss Institute for Biologically Inspired Engineering and the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) led by Wyss Core Faculty member David Mooney, Ph.D. in collaboration with Associate Faculty member and Paul A. Maeder Professor of Engineering and Applied Sciences, Conor Walsh, Ph.D. In previous work, the collaborators used Walsh’s Lab’s expertise in wearable robotic systems to develop a robotic mechanotherapy device that functions like a highly advanced massage gun. This technology enabled precise delivery of non-invasive mechanotherapy to injured muscles of mice, allowing the team to measure its biological effects. The researchers had used this device to optimize the magnitude, duration, and frequency of force applied to the muscles of young animals to accelerate healing, and found that mechanotherapy accelerated muscle healing by mitigating inflammation after injury. 

Now, using this device on aged muscle, the researchers found that the same mechanotherapy treatment that helps young muscle heal faster after injury actually has the opposite effect with aging – the settings that promoted healing in young muscle exacerbated injury in old muscle. In search for an explanation for these results, the team found that mechanotherapy amplified rather than alleviated inflammation in aged muscle, ultimately hindering the normal healing process by disrupting the behavior of muscle stem cells, a subset of cells responsible for replacing damaged muscle tissue. 

Prompted by these findings, the researchers next asked if controlling inflammation along with delivering mechanotherapy could help achieve healing effects in aged muscles. They found that this was indeed the case: combining mechanotherapy with anti-inflammatory treatment significantly improved healing in aged muscles and was superior to anti-inflammatory treatment alone. This work, published in Science Robotics, opens an exciting non-invasive therapeutic avenue for healing muscle injuries in elderly patients.

“Our study highlights critical differences in how muscle stem cells and immune cells respond to mechanical forces in the context of age, and how upregulated inflammation additionally compromises the function of aged stem cells needed for the regeneration of old muscles,” said Mooney who also is the Robert P. Pinkas Family Professor of Bioengineering at SEAS. “Muscle mechanotherapies likely thus won’t be a ‘one-size-fits-all.’ To realize their benefits, they will have to be tailored to patient populations, and specifically for aged individuals, it will be key to modulate inflammation.” 

From surprise to solution

Following their surprising discovery that mechanotherapy alone actually hinders the normal regeneration process of aged muscles by interacting with the immune system, the team took a deeper look at the muscles’ stem cells. Applying a mechanical load to muscle, as is done during mechanotherapy treatment, influences muscle cell behavior via several molecular “mechanotransduction pathways” that also affect stem cells. “We showed that although aged stem cell behavior was disrupted by the elevated inflammation, they were still able to ‘feel’ the mechanical forces of loading as we demonstrated by the activation of these pathways,” said first-author Stephanie McNamara, who is a graduate student on Mooney’s team and currently enrolled in the joint Harvard/MIT MD-PhD program. “This actually was what prompted us to ask whether controlling inflammation might enable these cells to respond to the mechanical stimuli – and indeed it did.” 

The team found that administering anti-inflammatory therapy in the form of glucocorticoids alongside mechanotherapy suppressed key pro-inflammatory pathways and reduced overall inflammation levels in injured aged muscle to those seen in injured young muscle. Yet at a cellular level the muscle cells continued to experience mechanotransduction, and by removing the negative impacts of inflammation, injured aged muscles could positively respond to the robot-delivered mechanical loading. 

“It is well-known that, with age, many of the normal processes of muscle healing and inflammation change. It’s important to question whether the same mechanisms seen in studies performed in young animals stay the same as the body ages,” McNamara says. “By leveraging what we learned in this study and our previous work and combining it with growing expertise in wearable soft robotic systems, we believe that in the future personalized mechanotherapeutic approaches can be developed to heal injuries across all ages.”

“This discovery that a non-invasive mechanotherapy can stimulate muscle repair in the elderly when combined with anti-inflammatory therapy opens an entirely new path for regeneration and repair in older populations. Mechanotherapies clearly have immense potential to change the lives of patients, but it is truly cross-disciplinary collaborations, such as the one between Dave Mooney’s and Conor Walsh’s groups at the Wyss Institute, that set the stage for advancing them into clinical realities,” said Wyss Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children’s Hospital, and the Hansjörg Wyss Professor of Bioinspired Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences.

Other authors on the study are additional members of Mooney’s and Walsh’s groups, including Bo Ri Seo, Benjamin Freedman, Emily Roloson, Jonathan Alvarez, C. T. O’Neill; and Herman Vandenburgh, Professor Emeritus at Brown University, Providence, RI. The study was funded by the National Institute of Dental and Craniofacial Research (under grant #R01DE013349), National Science Foundation (under grant #DMR-1420570), National Institute of Arthritis and Musculoskeletal and Skin Disease (under grant #F31AR075367), National Institutes of Health (under grant #K99AG065495), National Institute of General Medical Sciences (under award #T32GM007753 and T32GM144273), as well as an AR3T Regenerative Rehabilitation Pilot grant.

PRESS CONTACT

Wyss Institute for Biologically Inspired Engineering at Harvard University
Benjamin Boettner, benjamin.boettner@wyss.harvard.edu, +1 617-432-8232

###

The Wyss Institute for Biologically Inspired Engineering at Harvard University 

(http://wyss.harvard.edu) is a research and development engine for disruptive innovation powered by biologically-inspired engineering with visionary people at its heart. Our mission is to transform healthcare and the environment by developing ground-breaking technologies that emulate the way Nature builds and accelerate their translation into commercial products through the formation of startups and corporate partnerships to bring about positive near-term impact in the world. We accomplish this by breaking down the traditional silos of academia and barriers with industry, enabling our world-leading faculty to collaborate creatively across our focus areas of diagnostics, therapeutics, medtech, and sustainability. Our consortium partners encompass the leading academic institutions and hospitals in the Boston area and throughout the world, including Harvard’s Schools of Medicine, Engineering, Arts & Sciences, and Design, Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana–Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité – Universitätsmedizin Berlin, University of Zürich, and Massachusetts Institute of Technology.

The Harvard John A. Paulson School of Engineering and Applied Sciences (http://seas.harvard.edu) serves as the connector and integrator of Harvard’s teaching and research efforts in engineering, applied sciences, and technology. Through collaboration with researchers from all parts of Harvard, other universities, and corporate and foundational partners, we bring discovery and innovation directly to bear on improving human life and society.

END



ELSE PRESS RELEASES FROM THIS DATE:

Biodegradable artificial muscles: going green in the field of soft robotics

Biodegradable artificial muscles: going green in the field of soft robotics
2023-03-22
Stuttgart, Linz, Boulder – Artificial muscles are a progressing technology that could one day enable robots to function like living organisms. Such muscles open up new possibilities for how robots can shape the world around us; from assistive wearable devices that can redefine our physical abilities at old age, to rescue robots that can navigate rubble in search of the missing. But just because artificial muscles can have a strong societal impact during use, doesn’t mean they have to leave a strong ...

UCLA Health Tip Sheet: Visual loss and mask-wearing practices; Influenza vaccination rates are low ; Mixed ancestry study provides clues to genetic traits;

2023-03-22
Below is a brief roundup of news and story ideas from the experts at UCLA Health. For more information on these stories or for help on other stories, please contact us at uclahealthnews@mednet.ucla.edu. Journal scan Mixed ancestry study provides clues to genetic traits A new multi-institutional study led by scientists at the Bioinformatics Interdepartmental Program at UCLA has found that individuals of mixed ancestry, such as African Americans, inherit a mosaic of ancestry segments from ...

Known active ingredient as new drug candidate against “monkeypox”

2023-03-22
Nitroxoline is the name of the new drug candidate that could potentially be used to treat mpox. It was identified by scientists at Goethe University and the University of Kent as part of a multi-site study. The results of their research will now allow clinical trials to begin soon. The current mpox outbreak is the first of this size to occur outside of Africa and also the first mpox outbreak caused by human-to-human transmission. People with immunodeficiencies are particularly at risk from the disease. Although antiviral agents have already been shown to inhibit the replication ...

Why subvariants of the SARS-CoV-2 virus accelerated the pandemic

Why subvariants of the SARS-CoV-2 virus accelerated the pandemic
2023-03-22
The COVID-19 pandemic has killed nearly 7 million people worldwide (1.1 million in the United States) and severely harmed many millions more, though vaccines and antiviral treatments measurably reduced the potential loss of life and health.  A Commonwealth Fund report, for example, estimated COVID-19 vaccines alone prevented more than 18 million additional hospitalizations and 3.2 million additional deaths in the U.S. The pandemic has never been simple or easy. For example, the emergence of viral variants, in particular recent versions of the Omicron, fueled new surges of infection and disease throughout 2022 and into 2023. “There were real concerns ...

Semiconductor lattice marries electrons and magnetic moments

2023-03-22
ITHACA, N.Y. -- A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions. The group’s paper, “Gate-Tunable Heavy Fermions in a Moiré Kondo Lattice,” published March 15 in Nature. The lead author is postdoctoral fellow Wenjin Zhao in the Kavli Institute at Cornell. The project was led by Kin Fai Mak, professor of physics in the College of Arts and Sciences, and Jie Shan, professor of applied and engineering physics in Cornell Engineering ...

Nominations sought for 2024 Watanabe Prize in Translational Research

2023-03-22
Indiana University School of Medicine is accepting nominations until May 1 for the 2024 August M. Watanabe Prize in Translational Research. The Watanabe Prize is one of the nation’s largest and most prestigious research awards recognizing senior investigators focused on shepherding scientific discoveries into new therapies for patients. Nominees should be members of the scientific or medical communities who have demonstrated outstanding accomplishments in translational research. The winner will receive $100,000 and will spend Sept. 18-20, 2024, in Indianapolis as a vising dignitary, sharing insights and knowledge with audiences at IU School of Medicine and its partner institutions. ...

Dr. Ekta Khurana receives grant to study prostate cancer evolution

Dr. Ekta Khurana receives grant to study prostate cancer evolution
2023-03-22
Dr. Ekta Khurana, an associate professor of physiology and biophysics at Weill Cornell Medicine, has received a 3-year, $1.2 million grant from the United States Department of Defense to investigate how prostate cancer cells evolve to become resistant to hormone-blocking therapy. This work will contribute to further understanding prostate cancer and the development of effective targeted therapies for the disease.   Prostate cancer growth is dependent on androgens – male hormones such as testosterone ­– binding ...

New UBC water treatment zaps ‘forever chemicals’ for good

New UBC water treatment zaps ‘forever chemicals’ for good
2023-03-22
Engineers at the University of British Columbia have developed a new water treatment that removes “forever chemicals” from drinking water safely, efficiently – and for good. “Think Brita filter, but a thousand times better,” says UBC chemical and biological engineering professor Dr. Madjid Mohseni, who developed the technology. Forever chemicals, formally known as PFAS (per-and polyfluoroalkyl substances) are a large group of substances that make certain products non-stick or stain-resistant. There are more than ...

Photosynthesis ‘hack’ could lead to new ways of generating renewable energy

Photosynthesis ‘hack’ could lead to new ways of generating renewable energy
2023-03-22
Researchers have ‘hacked’ the earliest stages of photosynthesis, the natural machine that powers the vast majority of life on Earth, and discovered new ways to extract energy from the process, a finding that could lead to new ways of generating clean fuel and renewable energy. An international team of physicists, chemists and biologists, led by the University of Cambridge, was able to study photosynthesis – the process by which plants, algae and some bacteria convert sunlight into energy – ...

Simulated terrible drivers cut the time and cost of AV testing by a factor of one thousand

2023-03-22
    Photos  //  Video The push toward truly autonomous vehicles has been hindered by the cost and time associated with safety testing, but a new system developed at the University of Michigan shows that artificial intelligence can reduce the testing miles required by 99.99%.   It could kick off a paradigm shift that enables manufacturers to more quickly verify whether their autonomous vehicle technology can save lives and reduce crashes. In a simulated environment, vehicles trained by artificial intelligence perform perilous maneuvers, forcing the AV to make decisions that confront drivers only rarely on ...

LAST 30 PRESS RELEASES:

HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

[Press-News.org] Clearing a path for non-invasive muscle therapy for the elderly
Controlling inflammation enables injured aged muscle recovery via non-invasive mechanical loading, offering promise for the future of mechanotherapies for elderly patients.