Photosynthesis: varying roads lead to the reaction center
2023-03-24
(Press-News.org) LMU chemists use high-precision quantum chemistry to study key elements of super-efficient energy transfer in an important element of photosynthesis.
Photosynthesis is the motor of all life on Earth. Complex processes are required for the sunlight-powered conversion of carbon dioxide and water to energy-rich sugar and oxygen. These processes are driven by two protein complexes, photosystems I and II. In photosystem I, sunlight is used with an efficiency of almost 100%. Here a complex network of 288 chlorophylls plays the decisive role. A team led by LMU chemist Regina de Vivie-Riedle has now characterized these chlorophylls with the help of high-precision quantum chemical calculations – an important milestone toward a comprehensive understanding of energy transfer in this system and potentially being able to exploit its efficiency in artificial systems in the future.
The chlorophylls in photosystem I capture sunlight in an antenna complex and transfer the energy to a reaction center. There, the solar energy is used to trigger a redox process – that is to say, a chemical process whereby electrons are transferred. The quantum yield of photosystem I is almost 100%, meaning that almost every absorbed photon leads to a redox event in the reaction center.
Simulation under natural conditions
“Although the complicated energy transfer inside the photosystem has been studied for decades, there is no consensus up to today about the exact mechanism,” says de Vivie-Riedle. To gain deeper insights, the researchers simulated the light excitation of all chlorophylls in a model of photosystem I embedded in a lipid membrane. A highly accurate multireference method was used to calculate the electronic excitations. Compared to earlier studies, this approach allows the photosystem I to be described on the basis of state-of-the-art methodology. The complicated calculations were made possible by the supercomputer at the Leibniz Supercomputing Centre.
The results of the study, which is featured on the cover of the journal Chemical Science, reveal so-called “red chlorophylls” that absorb light at slightly lower energies than their neighbors due to ambient electrostatic effects. As a result, their absorption spectrum is red-shifted. Analogously, the researchers also identified energy barriers between the antenna complex and the reaction center, among other places. “This seems surprising at first glance because there is no obvious gradient along which energy is transferred from the antenna complex to the reaction center,” explains lead author Sebastian Reiter.
Fluctuations overcome energy barriers
Under physiological conditions, however, the entire photosystem I is subject to thermal fluctuations that overcome these energy barriers, as the relative energies of the chlorophylls change with respect to each other. In this way, new pathways into the reaction center can constantly open up, while others close. This, according to the core thesis of the authors, could be the key to the high efficiency of photosystem I.
“Our atomistic simulation of these processes enables a microscopic understanding of the system and its dynamics in its natural environment, complementary to experimental approaches,” concludes Regina de Vivie-Riedle, who is also a member of the e-conversion cluster of excellence. One of the goals of the cluster is to one day transfer the efficiency of natural photocatalysts to artificial nano-bio hybrid systems for applications such as the production of hydrogen as an energy carrier or the conversion of carbon monoxide into fuel. This requires a better understanding of the energy transfer mechanism. With their results on photosystem I, the scientists have now taken an important step toward the realization of this goal.
END
ELSE PRESS RELEASES FROM THIS DATE:
2023-03-24
Blind people are better at sensing their own heartbeats than sighted, shows a study by researchers at Karolinska Institutet in Sweden and Jagiellonian University in Poland. The study indicates that blindness leads to a heightened ability in feeling signals from the inner body. The findings are published in the Journal of Experimental Psychology: General.
Thirty-six blind and as many sighted individuals were asked to count their own heartbeats without checking their pulse or touching their body. At the same time, the ...
2023-03-24
An IIASA study shows that maternal education, and particularly secondary education, plays a significant role in reducing deaths in newborns and children under five years of age in both rural and urban areas of India.
Sustainable Development Goal (SDG) 3.2.1. aims to end preventable deaths of newborns and under-five children by 2030. Although significant progress has been made worldwide in this regard with global under-five deaths falling from 12.5 million in 1990 to 5 million in 2020, it is still ...
2023-03-24
Researchers at the Indian Institute of Science (IISc) are working on designing antennas that can empower 6G technology, which is instrumental in realising efficient V2X (Vehicle to Everything) communications.
In a recent study, the team, led by Debdeep Sarkar, Assistant Professor at the Department of Electrical Communication Engineering, shows how self-interference in full-duplex communication antennas can be reduced, and consequently the movement of signals across the communication network can be faster and more bandwidth-efficient. Such full-duplex ...
2023-03-24
A parasite which has devasting impacts on agriculture and human health is the first pathogen to have its proteins located and mapped within its cells – providing clues to their function and helping to identify potential drug targets.
African trypanosomes are parasites transmitted by tsetse flies that cause sleeping sickness in humans (presenting as fever, anaemia and, in serious cases, death) and a similar disease celled nagana in cattle. These parasites have made large areas of Africa unsuitable for ...
2023-03-24
Graphene is the strongest of all materials. On top of that, it is exceptionally good at conducting heat and electrical currents, making it one of the most special and versatile materials we know. For all these reasons, the discovery of graphene was awarded the Nobel Prize in Physics in 2010. Yet, many properties of the material and its cousins are still poorly understood – for the simple reason that the atoms they are made up of are very difficult to observe. A team of researchers from the University of Amsterdam and New York University have now ...
2023-03-24
A new high resolution model of the CA1 region of the human hippocampus has been developed by the Institute of Biophysics of the Italian National Research Council (CNR-IBF) and University of Modena e Reggio Emilia (UNIMORE), part of the Human Brain Project. The single-cell resolution model, which replicates the structure and architecture of the area, along with the position and relative connectivity of the neurons, was developed from a full-scale dataset of high resolution images. The dataset is available in the BigBrain Atlas and it will be soon available on EBRAINS. According to the study, published in the journal ...
2023-03-24
Moderate and severe ovarian hyperstimulation syndrome (OHSS) developed in 1.14% of Chinese women of reproductive age between 2013 and 2017. Moreover, women under 35 years of age receiving assisted reproductive technology (ART) should be monitored for OHSS more closely compared with other age groups.
These findings were concluded from the first report on the incidence of moderate and severe OHSS in China recently published in Health Data Science, a Science Partner Journal.
OHSS constitutes the most severe iatrogenic ...
2023-03-24
Hailey-Hailey disease is a rare, inherited condition characterized by patches of blisters appearing mainly in the skin folds of the arm pits, groin and under the breasts. It is caused by a mutation in the gene that codes for a specific protein involved in the transportation of calcium and manganese ions from the cell cytoplasm and into a sac-like organelle called the Golgi apparatus. Scientists at Tohoku University, together with colleagues in Japan, have uncovered some aspects of this protein's structure that could help researchers understand how it works. The findings, published ...
2023-03-24
ChatGPT's impact extends beyond the education sector and is causing significant changes in other areas. The AI language model is recognized for its ability to perform various tasks, including paper writing, translation, coding, and more, all through question-and-answer-based interactions. The AI system relies on deep learning, which requires extensive training to minimize errors, resulting in frequent data transfers between memory and processors. However, traditional digital computer systems' von Neumann architecture separates the storage and computation of information, resulting in increased ...
2023-03-24
A research team at POSTECH led by Professor Chulhong Kim (Department of Electrical Engineering, Department of Convergence IT Engineering, and Department of Mechanical Engineering) has compiled the findings from innovative research on contrast-enhanced photoacoustic imaging conducted over the last four years. These findings were recently featured in Chemical Reviews, a highly authoritative journal.
For decades, the scientific community has been investigating the potential of photoacoustic imaging as a biomedical imaging modality. However, despite its enhanced optical contrast and ultrasonic spatiotemporal resolution, photoacoustic imaging faces ...
LAST 30 PRESS RELEASES:
[Press-News.org] Photosynthesis: varying roads lead to the reaction center